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Abstract. We study the problem of flow permeability of fracture joints using Lattice-Gas Automata 
simulations. We model the fracture as a rough channel bounded by a self-affine surface. Changing 
the surface roughness exponent, rough walls having different microstructures are obtained. Different 
relative roughnesses - defined as the height of the largest surface asperity divided by the mean 
aperture - are obtained 'pulling apart' the two surfaces that constitute the rough walls of the channel. 
We calculate the macroscopic variables volume flow rate and pressure difference using microscopic 
balances. In the low Reynolds number regime the pressure difference and the flow rate are linearly 
related (the behavior is described by Darcy's law). In this regime, we study the effect of geometry on 
the permeability. We have found that permeability is independent of the surface roughness exponent 
/ /and it is fully determined in terms of the relative roughness and mean aperture of the fracture joint. 
For larger Reynolds numbers a transition to a regime in which pressure difference and flow rate are 
not longer linearly related is observed. This transition is observed in a domain of Reynolds numbers 
for which the behavior in a smooth channel remains linear. We discuss this transition. 
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1. Introduction 

Many of  the surfaces one usually finds in nature are highly fractured on all scales, 
ranging f rom microcracks  to large scale joints and faults. Over  the past few years 
considerably progress has been achieved in the characterization of  fracture surface 

morphology,  in which scale invariance, in the form of  s e l f  aff inity,  was found in 
widely different materials ranging f rom crystalline materials on the nanometer  
scale to natural fault and rock surfaces up to and beyond the meter  scale [1-15] 

- for recent reviews,  see Reference [16]. Surface geometry  controls the fracture 
permeabi l i ty  since the fracture aperture is related to the roughness of  the two 

surfaces in contact. The problem of  flow permeabi l i ty  through fractured joints 
is o f  p r imary  importance  in fields such as petroleum engineering, geology and 
hydrology.  

In this paper  we model  the fracture as a rough channel bounded by self-affine 
surfaces [17] and we use the Lat t ice-Gas Automaton  (LGA) for hydrodynamics  
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developed by Frisch, Hasslacher and Pomeau (FI-IP) [ 18] to study flow permeabil- 
ity. This model has already been successfully applied to study several problems, 
including flow in porous media [19], osmotic flow across semipermeable porous 
membranes [20], models with surface tension for simulations of immiscible two 
phase flows [21, 22] and boundary layer problems [23]. The model is particularly 
appropriate for studying hydrodynamics in environments with complex boundaries 
rendering boundary conditions very difficult to implement using other methods, 
such as finite difference schemes. 

Flow through porous media or fractures is usually described using Darcy law 

K A  A P  
Q -  pu L ' (1) 

where Q is the volume flow rate, A P  is the pressure difference between measuring 
points separated a distance L, u is the kinematic viscosity of the liquid, p the fluid 
density, A is the flow cross section and K is the permeability which is a function of 
the pore geometry only. In several applications fluid flow through a single fracture 
is assumed analogous to laminar flow between two smooth plates, 

~3 A P  
Q -  12pv L ' (2) 

where ~ is the separation between the plates. In this case the permeability K is 
given by ~2/12. Theoretical approaches have usually focused on redefining the 
aperture term in the cubic law in order to account for the surface roughness and the 
tortuosity of the path, see e.g. references [24, 25]. 

Brown [26] studied the effect of roughness in the flow through fractured joints 
solving Reynolds equation (this equation is used to describe the flow between 
slightly nonparallel and nonplanar surfaces). For various surface roughnesses (in his 
language, 'fractal dimensions') Brown calculated the hydrodynamic conductance 
as a function of the root-mean square of the surface height. Roux et al. [27] recently 
suggested that the Hydraulic Conductance of a fractured joint has to scale as 13H, 
where 1 is the displacement of the fracture parallel to the mean fracture plane 
and H is its roughness or Hurst exponent. This approach supposes that the 'cubic 
law' remains valid despite the self-affine surface roughness and this is used to 
estimate the mean separation between the two surfaces in terms of the horizontal 
displacement I. However, once one knows the mean separation, an additional 
factor accounting for the roughness has to be introduced in order to estimate the 
flow permeability: it is not enough to know the roughness exponent H only. Here 
we study these geometry effects on the permeability. 

The paper is organized as follows: In Section 2 we introduce the LGA model 
for hydrodynamics and in Section 3 we present the simulations we have done in 
order to test the algorithm. In Section 4 we briefly discuss about the features of 
self-affine sets, we present the numerical results concerning the permeability of 
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Fig. 1. 
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The particle velocities ci are numbered from 1 to 6 and all have module 1 (co is a 

fracture joints and we discuss about the appropriateness of LGA to treat this type 
of problems. In Section 5 we discuss the observed non-linear effects. 

2. Lattice-Gas Automata 

We now briefly summarize the main features of the lattice gas cellular automaton 
(LGA) model (for details see Reference [28]). The residing lattice is triangular 
which ensures the isotropy of the relevant fourth order tensor. The fluid is repre- 
sented by a set of identical boolean particles with discrete velocities. The particles 
can have either a velocity of unit value along one of the six directions of the lattice 
or be at rest on a node of the lattice, see Figure 1. This multiply occupancy of a 
lattice node is subject to a constraint, the exclusion principle which states that at a 
given node no two particles can have the same velocity. Therefore a lattice node 
can be empty or occupied up to a maximum of seven particles. The time evolution 
of the system proceeds in two steps: propagation and collision. During the prop- 
agation step, each particle moves one lattice unit in a direction determined by its 
velocity or it stays at rest. In the collision step, particles undergo instantaneous 
collisions at the lattice nodes during which their velocities are modified according 
to the collision rules. These collisions obey conservation of mass and momentum. 
The model FHP I uses only six possible velocities and all their collision rules are 
given in Figure 2a. The model we use here is FHP II which also includes rest and 
moving-particle collisions, see Figure 2b. When more than 3 particles coexist on 
the same lattice node no collision occurs. 

The state of the lattice gas is fully determined by the specification for each site 
rj of seven boolean variables ~zi(rj) (i = 0, 1 , . . . ,  6). ni(rj)  is equal to 0 or 1 
depending on the presence (hi = 1) or absence (hi = 0) at the site rd of a particle 
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Fig. 2. (a) All allowed binary and triple collisions in the FHP I model, 00) Additional collisions 
including rest particles (FHP II model), All these collisions conserve both momentum and 
particle number. 

with its velocity oriented along direction i (i = 0 corresponds to a particle at rest). 
In terms of  their ensemble average, Ni = (ni), one defines macroscopic quantities 
such as the average mass and momentum density per site p and pu [28], 

p = ~ Ni (3a) 
i 

and 

pu = ~ Nici, (3b) 
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respectively. Here ci where i = 1 , . . . ,  6 are the velocity vectors defined in Figure 1, 
and c0 = 0. 

It can be shown that for small velocities u the system obeys the Navier-Stokes 
equation with a correction term [28]: 

0 n  
0--t- + g (p ) (u .  V)u  = - V P  + uVu,  (4) 

where 9(P) is the mentioned correction term. For the FHP II model g(P) is given 
by [29] 

7 ( 2 p -  7) 
9(P)- 12 ( p -  7 ) "  (5) 

The term g(P) restricts the use of lattice-gas models to incompressible flows. In 
this case, p is constant and then 9(P) is also a constant that can be absorbed in a 
rescaled velocity. This model leads to the following expression for the kinematic 
viscosity of the gas [29], 

1 1 
u = 28d(1 - d)3(1 - 4d/7)  8" (6) 

Note that u is defined as a 'kinematic viscosity' relative to the density p which is 
a density per site. We shall use this expression to test the numerical algorithm. 

3. Numerical Verification of the Algorithm 

The most common method for programming lattice-gas automata is through look- 
up tables. A detailed description of how to program LGA using this method can be 
found in Reference [30]. In order to use this algorithm the state of each lattice site 
is put in one computer word. For the FHP 11 model this can be done using words 
of 8 bits. For instance, the configuration of a site having particles with velocity Co 
(a particle at rest), c 2 and c 4 is stored in the computer as 20 + 22 q- 24. The eighth 
bit can be used to indicate whether or not the lattice site is a boundary site. 

In order to test the algorithm we simulate the flow through a two-dimensional 
channel. The channel is a rectangle with one of its sides parallel to the flow 
direction. The equilateral triangles of the lattice have one of its sides parallel to 
the flow direction. The side of the elementary triangles is taken as the lattice 
constant of the lattice. Initially, particles are distributed on the lattice with the same 
probability of being at rest or of having a unit value velocity in one of the six 
lattice directions. At both ends of the channel periodic boundary conditions are 
imposed, particles leaving the channel at the right end are reinjected at the left 
one in order to maintain the number of particles constant. In order to implement 
no-slip boundary conditions, particles incoming to the boundary simple bounce- 
back into the direction from which they came (Figure 3). This rule ensures that, 
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Fig. 3. Particle reflection upon collision with a frictional wall. These rules ensure a vanishing 
velocity in both the normal and parallel direction to the wall. 

on the average, there is no local relative velocity of the fluid with respect to the 
solid walls. This constraint creates a viscous dissipation which is compensated 
in our simulations by a 'gravitational force' [31] applied to the particles in the 
longitudinal direction (a constant mean velocity is thus maintained). This force is 
created by the forcing rules described in Figure 4. Note that all these rules ensure 
the application of a positive momentum only in the x-direction. Depending on the 
value of a parameter g (0 < g < 1) a given fraction of lattice sites are randomly 
chosen at each iteration and whenever is possible the forcing rules of Figure 4 are 
applied. 

The applied force is estimated through equating momentum input and output in 
the system. Two methods are used for this: (a) We count the number of molecules 
of each velocity direction that are turned around at each iteration. When rule (a) 
- defined in Figure 4 - is applied the momentum gain in the x-direction is 2c2. 
When rules (b) or (c) are applied, the momentum gain is 2Cl cos(Tr/3) = cl and 
2c3 cos(Tr/3) = c3, respectively. The average moment gain per unit time (per 
iteration) is the applied force. (b) At steady state the applied force is equal to the 
frictional losses due to collisions with the wall (all the other collisions keep the 
momentum unchanged). Referring to Figure 3, in case (a) the momentum lost in 
the x-direction by the particle that collides with the surface is 2c2, whereas in (b) 
and (c), it is 2e3 cos(Tr/3) = c3 and 2cl cos(Tr/3) = cl, respectively. 

We first run a simulation with a fluid of density p = 1 in a channel of 600 lattice 
units length. The channel width is constituted by 100 elementary triangles which 
represents an effective cross section of 100v/3/2 lattice units. After 10000 steps 
the system reaches steady state. The velocity was then averaged over an additional 
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Fig. 4. The three microscopic forcing rules are shown as cases (a), (b) and (c). Each application 
of one of these rules adds momentum in the positive x-direction. In either case the momentum 
in the y-direction remains unchanged. 

10000 steps and spatial averages were taken over boxes of 10 x 10 lattice units. 
Figure 5 shows the resulting velocity profile. One can see that the profile fits well 
the expected parabolic profile of a Poiseuille flow. 

One can compare the viscosity obtained from the velocity profile of Figure 5 
with that obtained from the Boltzmann approximation, Equation (6). In the present 
geometry the solution of the Navier-Stokes is given by Equation (2). A P  is 
obtained from the simulations as the force, calculated using the rules described 
above, divided by the channel width. Figure 6 is obtained running simulations in a 
range of Reynolds number from 10 to 100, and from the slope we find u = 0.30. 
The value obtained substituting d = 1/7 in Equation (6) is u = 0.31, which is in 
good agreement with the value obtained from the simulations. 

4. Permeability of Self-Affine Fractures 

4.1. PROPERTIES OF SELF-AFFINE SURFACES 

A set is self-affine if it is invariant under the affinity transformation [17] 

xi~Aixi .  (7) 
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Fig. 5. Velocity profile after 20000 iteration steps, The squares represent averages over 
10 x 10 boxes and I0000 iterations, The solid line is the best parabolic fit. 
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AP 
Fig. 6. Flow rate Q vs. pressure drop A P for a two-dimensional channel of 600 lattice units 
long. The range of flow-rates studied corresponds to a range of Reynolds numbers varying 
between 10 to 100. From the slope and Equation (2) one finds u = 0,30 in good agreement 
with the value u = 0.31 obtained from Equation (6). 
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Fig. 7. The flow field in channels with rough boundaries. The roughness exponent is 
( a ) / f  = 0.3, (b) H = 0.5 and (c) H = 0.7. The average aperture is 6av = 240 lattice units 
and the maximum height of the rough surface Ym~ = 90 lattice units. The upper boundary is 
a plane of symmetry. The flow lines are marked as arrows, whose lengths mark their strength 
on a logarithmic scale - see footnote in Section 4.2. 

G r o u p  p r o p e r t i e s  i m p l y  tha t  a l l  Ai a re  h o m o g e n e o u s  f u n c t i o n s  o f  o n e  o f  t he  Ai, 

e .g.  Ai ~ A~ ~. In  t h e  c a s e  o f  t he  t w o - d i m e n s i o n a l  p ro f i l e s  u s e d  in  th is  w o r k  ( see  

F i g u r e  7),  th i s  i m p l i e s  t ha t  



140 R. GUTFRAIND AND A. HANSEN 

~ a)2.  (8) 

This is usually expressed in terms of the average width of the profile w (direction 2) 
and the profile length L (direction 1): 

w ~ L H, (9) 

where H is known as the Hurst or roughness exponent. 
The algorithm used to generate these surfaces was proposed by Voss [32]. 

The algorithm uses an independent Gaussian variable { with zero mean and unit 
variance to determine the altitude of the points. For the one-dimensional profiles we 
use in this work, the algorithm can be summarized as follows: In the first generation 
the altitude of the central point (x = 1/2) is determined by generating one value 
for the Gaussian variable {. In the next generation the elevation for x = 1/4 is 
determined interpolating the elevation of x = 0 and x = 1/2; and the elevation of 
x = 3 /4  interpolating the elevation for x = 1/2 and x = 1. Then one adds to these 
altitudes the value of the random variable {n=l which has now the variance 

1 
( ~ ) -  r2nH with r =  1/v"2. 

In each generation, the algorithm doubles the number of positions at which the 
altitudes are specified, and reduces the distance between the points by a factor 1 / v'~. 
The surfaces generated by this process are self affine on scales small compared to 
the linear size of the profile and they have a roughness exponent H.  For details see 
Reference [17] or [32]. 

4.2. NUMERICAL ESTIMATION OF PERMEABILITY 

In the simulations, the flow domain is a channel in which one of its sides is a rough 
self-affine surface and the other one is plane and parallel to the flow direction, as 
shown in Figure 7. The streamlines, which enables one to see the flow pattern near 
the wall are also shown.* We impose no-slip boundary conditions on the rough 
surface, and mirror-reflection type conditions on the smooth surface. Here, upon 
collision only one component of the particle momentum is changed, as this surface 
is a plane of symmetry on which uy = 0 and Ouz/Oy = 0.** This condition ensures 
maximum velocity on the x-direction and zero velocity on the y-direction. We also 
impose periodic boundary conditions in the flow direction. 

* The strength of the flow field is shown on a logarithmic scale and is constructed as follows: 
The maximum length of an arrow is n lattice units and this corresponds to a velocity u that satisfies 
Umax/2 < u ~ Umax, ( n -  1)latt ice units corresponds to Umax/2 2 < u ~ Umax/2 and so on. This 
enables us to visualize the flow-field near the surface. In Figure 7 n = 10 lattice units. 

** In this work we use mirror-reflection type boundary conditions, however, other boundary condi- 
tions, e.g. no slip can also be used. In both cases the distribution of widths in the fracture is self-affine. 
We are interested in the scaling properties of these surfaces and the presence of further symmetries, 
e.g. the symmetry plane, is irrelevant for this study. 
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Fig. 8. Scheme of the rough channel. 5,v is the mean aperture of the fracture, namely twice 
the distance from the mean plane of the rough surface to the symmetry plane, ymax is the height 
of the largest surface peak. 

We consider three values of the roughness exponent H : H = 0.3, H = 0.5 
and H = 0.7, see Figure 7. For each H value we use two different surfaces. Besides 
the roughness exponent H,  two other geometrical parameters are necessary to fully 
describe the system: the mean aperture ~av and the height of  the largest asperity of 
the rough surface Ymax. The local aperture is twice the distance between the rough 
and the plane surface. The mean aperture ~Sav is twice the distance between the 
smooth surface and the mean plane of the rough surface (see Figure 8). 

In all the considered examples, ffmax ~ 9 0 v ~ / 2  lattice units and ~Sav varies 
from ~ 200v;3/2 to ,.o 4 0 0 v ~ / 2  lattice units. The three examples of Figure 7 
have Say ~ 240 lattice units. They have approximately the same mean aperture and 
relative roughness ffmax/(~Sav/2). However, they have different microstructures, as 
lower roughness exponents lead to narrower pores. The linear size of the channels 
is 552 lattice units. This includes small smooth channels of 20 lattice units at each 
end (in the flow direction) of the channel. The fluid density per site p = 1, and its 
kinematic viscosity, calculated using Equation (6), is u = 0.31. 

Tuning the parameter g (see Section 2) enables us to work at different flow 
rates. Between 20000 and 60000 iterations are required to stabilize the automata 
(depending on the value of ~Sav)- This time is of the order of ~Sa2v/t/, the characteristic 
time for momentum diffusion. Each run takes between 20 to 40 minutes on a CRAY 
C98 depending on the system size and velocity. 

From the simulations we get the flow rate Q and AP .  The former is obtained 
averaging particle velocities over boxes of 10 • 10 lattice units and over 20000 
iterations, and then calculating the flow rate across a channel section. A P  is 
obtained as the force, calculated using the rules described in Section 3, divided 
by the channel width, the width being that of the smooth entrance and exit of 
the channel (see above). In each studied case, we first check that Q and A P  



142 R. GUTFRAIND AND A. HANSEN 

are linearly related. This is important as the roughness leads to a transition to a 
non-linear regime at much lower Reynolds numbers than in the case of smooth 
surfaces. In Figure 9 we show Q vs. A P  for H = 0.3, H = 0.5 and H - 0.7. 
Two examples, corresponding to two relative roughness values for each / /  are 
presented. In Figure 9a t~av/(2ymax ) ~ 1.35 and in Figure 9b t~av/(2ymax) ,,o 2.40. 
For low Q values - i.e. low Reynolds numbers - Q and A P  can be linearly fitted 
for all cases as it is shown in Figure 9. Notice that the slope is almost independent 
of  the roughness exponent H.  It has to be pointed out that the origin was included 
in all the fits and that the last point that already shows a large deviation from the 
linear fit was not included. These deviations from linearity are further discussed in 
Section 5. 

From the slope at the origin we can then calculate the hydraulic diameter 6H 
that satisfies 

O -  63  xP. (lO) 
12#L 

Usually the mean aperture, 6av, is used as an approximation for the hydraulic 
diameter, but predictions based on this approach are very far from experimental 
values, as well as from the simulation results we present here. This is shown in 
Figure 11, w h e r e  (t~H/t~av) 3 is plotted vs. ~av/(2ymax).  Deviations from the simple 
Poiseuille flow based on the average aperture 6av are accounted for using the 
geometrical parameter t~av/(2ymax ). These deviations are fully determined by this 
parameter (and which are independent of the roughness exponent H)  as can be 
seen in Figure 10 where the data for all the surfaces collapse on the same curve. 
Moreover, this curve can be well fitted as a power law of the form 

with 

( Ymax ~ ~ 
(~SH/Sav) 3 ~  1-- \ ~ v / 2 ]  ' (11) 

c~ ~ 0.35. 

Note that Equation (11) satisfies the two asymptotic limits, for Ymax/(6av/2) --+ 0 
we find (t~H/~av) 3 ,,o 1 and for Ymax/(6av/2) "+  1 w e  f i n d  (~H/ t~av)  3 ---+ 0. One can 
see that once knowing the average aperture and the height of the largest asperity, the 
permeability is independent of the H value. This is because the largest asperities 
determine the flow pattern. One can easily see in Figure 7 that it is the largest pores 
which determine the effective cross section for the flow, and the smaller pores 
simply form recirculation or stagnation zones. 

4.3. VALIDITY OF LGA FOR CHANNELS WITH ROUGH BOUNDARIES 

As we have previously mentioned, we need to test the viability of LGA simulations 
to study problems of complex boundaries as the self-affine surfaces shown in Fig- 
ure 7. One can expect here some of the same problems as observed in the study of 
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Fig. 9. A P  vs. Q for rough channels  o f  roughness  exponent  H = 0.3, H = 0.5 and 
H = 0.7, (a) the ratio ~ a v / ( 2 y ~ )  "~ 1.35 and (b) ~av/(2ymax) "~ 2.40. For low Q values the 
data are linearly fitted. The origin is included in this fit. In both cases,  (a) and (b), the last 
points deviate f rom the linear fit and are not  included in it. Notice that the slope is almost  
independent  o f  the roughness  e x p o n e n t / / .  

porous media using LGA simulations. Some authors have claimed that this tech- 
nique is not appropriate when the mean free path of the cellular automata particles 
is of the order of magnitude of the pore size [19, 33]. In this case hydrodynamic 
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Fig. 10. (6n/6av) 3 vs 6av/(2ymax). Circles are for the H = 0.3 surfaces, squares for H = 0.5 
and diamonds for H = 0.7. The solid line is the best fit to the numerical results. 

correlations cannot develop and the resulting flows will not be truly hydrodynam- 
ic. For a cellular-automaton fluid of p = 1 the mean free path has been estimated 
as )~ ~ 9 lattice units. Thus, to have real hydrodynamic behavior, we expect the 
smallest pore size to be larger than 9 lattice units [34]. In the cases studied here, 
the rough surface is the boundary of the system and the small surface irregulari- 
ties (or pores) have a negligible effect on the hydrodynamics. This is because the 
momentum losses are principally due to collisions with the singular points of the 
surface that are accessible through the largest pores. 

We calculate the pressure drop using two methods: measuring the average 
number of particles turned around per iteration (per unit time) by the 'gravitational 
force' and counting the average number of collisions with the wall per iteration, as 
already discussed in Section 3. In the case of a steady-state flow, both of them have 
to converge to the same value. If this is so, it can be used as an indication that the 
rough wall does not disturb the momentum transfer from the bulk to the surface 
and that the bulk flow is truly hydrodynamic. This does not mean that LGA can 
reproduce the real hydrodynamics even inside the smallest pores, but this does not 
affect the bulk flow. In Table I we summarize the results for some of the studied 
cases. 

The numbers in columns three and four are the average of 60000 iterations. 
The difference between the force calculated as the average applied force and that 
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Fig. 11. AP/Q vs. Re for the rough channel of Figure 12 (circles) and for a smooth channel 
(squares) of 600 lattice units length. Note that for large Re numbers the rough channel clearly 
deviates from the constant Ap/Q ratio predicted by Equation (1), whereas in the same range 
of Reynolds numbers, the behavior in the smooth channel shows just a small deviation. (In the 
rough channel the largest observed Ap/Q ratios are 50% larger than the values observed for 
the low Re numbers whereas in the smooth channel this deviation is approximately 15%.) 

calculated as the average friction losses is less than 1% in almost all the cases. 
Objects with very low H value (H = 0.3, Figure 7a) present very narrow pores 
where hydrodynamic correlations do not develop. On the contrary, objects with 
large H value (H = 0.7, Figure 7c) present wide openings where the streamlines 
penetrate and the method can be applied even to study the flow pattern in these 
zones. Although the systems present very different microstructure due to the dif- 
ferences in their roughness exponent H,  their permeability can be represented by 
the same function of the geometry which is also independent of the e x p o n e n t / / -  
see Equation (11). 

5. Non Linearities 

The approach used in Section 4 to study the permeability of fracture joints supposes 
that pressure drop and velocity are linearly related. However, due to the presence 
of surface irregularities one observes non-linear effects at lower Reynolds numbers 
than in smooth channels. LGA leads to the incompressible Navier-Stokes equations 
only in the limit of low Mach numbers, M = u/%, where u~ is the sound velocity 
in the lattice. In the case ofFHP II model, u~ = x/3x/~ [29], so in our simulations we 
keep velocities low; the maximum velocity (in the constriction zones) is u ,-~ 0.30 
for the largest Reynolds numbers we have studied. 
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TABLE I, Comparison of force calculated as momentum gain 
per iteration and as momentum loss per iteration 

H = 0 . 3  
6av/2ymax Re Number Applied force Friction losses 

(lattice units) (lattice units) 

1.33 15 1.306 1.302 
1.33 50 2.100 2.104 
1.66 16 0.232 0.230 
1.66 50.5 0.850 0.845 
2.32 23 0.116 0.115 
2.32 81 0.426 0.426 

5~v / 2 y ~  
H = 0 . 5  

Re Number Applied force 
(lattice units) 

Friction losses 
(lattice units) 

1.34 11 0.473 0.470 
1.34 44 2.173 2.168 
1.75 27 0.461 0.459 
1.75 107 2.277 2.274 
2.50 45 0.225 0.223 
2.50 135 0.786 0.764 

6av/2ym~ 
H = 0 . 7  

Re Number Applied force Friction losses 
(lattice units) (lattice units) 

1.36 12 0.473 0.475 
1.36 48 2.176 2.183 
1.71 26 0.462 0.465 
1.71 62 1.265 1.266 
2.42 43 0.230 0.226 
2.42 125 0.803 0.806 

In the flow through a rough channel, one can find deviations from linearity as it 
is shown in Figure 11 where A P / Q  vs. Re number is plotted for the rough channel 
of  Figure 12 and for a smooth channel. We have increased the average width o f  the 
rough channel in comparison to those used in the previous section (~av = 640x/-3/2 
lattice units and Ymax ---- 200x/~ /2  lattice units). This enables us to work with larger 
Reynolds numbers,  yet  being far below the sound velocity. The flow rates shown in 
Figure 11 correspond to Reynolds numbers ranging from 20 to 180. For comparison 
we show in the same figure the behavior of  a smooth channel over  approximately 
the same range of  Reynolds numbers. The rough channel largely deviates from 
the linear regime predicted by Darcy law (a constant A P / Q  ratio), whereas the 
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smooth channel behavior approximately remains linear, as can be seen in Figure 
11. 

Although an asymptotic regime described by a power law of the type Q 
( A P )  ~ with oe ~ 1 could not be reached, it is clear from Figure 11 that surface 
roughness can be an important source of non-linear effects in the flow through 
fracture joints. The cause of the deviations is probably the high vorticity zones 
originated behind obstacles. These zones usually grow when the Reynolds number 
increases, i.e. the streamlines follow less the surface behind the obstacles (see 
Figure 12). Due to this effect, the hydraulic diameter is itself a function of the 
Re number and Eq. (10) is not longer valid. Larger Reynolds numbers can be 
investigated increasing the channel width but keeping the same relative roughness. 
This will enable us to work at larger Reynolds numbers while the maximum velocity 
remains constant. This study can answer the question about a power law behavior 
with an exponent that can be a function of the roughness. However, this is beyond 
our computer capabilities at this moment. 

6. Conclusion 

We have shown that LGA simulations can constitute a powerful tool in the study 
of hydrodynamics in fracture joints. We have studied the permeability problem 
in the linear and nonlinear regime. The studied system has no analytical solution. 
As a result, the appropriateness of the method cannot be analyzed comparing 
numerical to analytical results as it has been done for other cases [20, 23]. We have 
shown that LGA reproduce expected results for the hydrodynamic permeability. 
The permeability is fully determined in terms of the relative surface roughness and 
it is independent of the roughness exponent / / .  A transition to a regime in which 
the system is not longer described by the linear Darcy equation has also been 
observed. This transition occurs in a regime in which the behavior in a smooth 
channel remains linear. 

A natural extension of this work, would be to seek solutions of boundary lay- 
er problems in the presence of surface roughness, and to study tracer dispersion 
in channels with rough walls. Both of these problems are of great importance in 
many industrial applications. They are furthermore, both eminently suited for the 
LGA method. We are at present working on these problems. Further extensions 
(as suggested by an anonymous referee) include studies of flow permeability in 
3D fractures. In order to compare the results of the present work with 3D sim- 
ulations one has to relate the aperture distribution along flow paths (which can 
probably be approximated as 2D) to the global fracture aperture distribution, as 
flow preferentially occurs in wide aperture areas, avoiding asperities and contact 
zones. 
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Fig. 12. Fluid-flow in a rough channel. The roughness exponent of the surface is H = 
0.5, 6av = 640 lattice units, gm~ = 200 lattice units, Q = 30 and the Reynolds number 
_Re = 115. The large zones behind the obstacles are probably the origin of the nonlinear 
behaviour. The strength of the flow field is shown in a logarithmic scale (see footnote in 
Section 4b). 
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