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ABSTRACT 

 In this thesis, I use recent advance in statistics and econometrics in an effort to re-

test some well-known theoretical propositions, examine whether those new techniques 

support the theory, provide models that are better fitted to describe and forecast economic 

time-series. The Purchasing Power Parity theory is tested using the Fisher and Seater 

(1993) and King and Watson (1997) methodologies and strong evidence in support of PPP 

is found. I use the general class of ARCH/GARCH processes to model financial time series 

in an ARIMA framework and the best fitted models outperform traditional ARIMA models 

in terms of the forecast variance. Finally, I test the balanced growth theory and try to 

estimate a money demand function using the Johansen and Juselius (1993) methodology. I 

do not find evidence in support of the balanced growth theory and a stable money demand 

function, and these results are not sensitive to different monetary aggregates that are 

constructed according to recent index number theory. 
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During the last decade we have seen major innovations that affected with one or 

another way all areas of statistics, econometrics and applied economics. Following the 

1970's and 1980's that can be referred to as the decades of theory development, the 1990's 

were highlighted by major developments in statistics and econometrics. Thus, we observe 

the development and implementation of new techniques that resolve many of the problems 

md impediments in the use of classical econometric procedures. In time series analysis, 

whenever researchers used the classical econometric models to describe the relationship 

between certain economic variables, to test different hypotheses or to forecast future values 

of these variables, implicitly assumed that the assumptions these models make, regarding 

specific properties of the data in hand, were met. Some of the basic assumptions are that 

the first moments of the series in question must be stationary or in other words that the 

mean and variance of the series must be constant. Testing economic times series for these 

properties, has led us to the conclusion that most series do not satisfy either one or both of 

these assumptions. Therefore, the empirical results that are based on these techniques are 

invalid. The solution to this problem is the use of econometric methods specifically 

designed for series that fail to satisfy the assumptions of the classical econometric models 

or the transformation of the time series data in such a manner that they conform to the 

assumptions. 

From the techniques that were developed in the past decade to deal with non-

stationary and heteroscedastic data, I will employ in this thesis some of the most recent 

developments and apply them in some areas of economic theory, in an effort to see whether 

the implementation of these procedures provides evidence in support of the previous 
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literature. I wilt show in this thesis that the use of these methodologies lead to some very 

interesting propositions and theory implications that were not obvious in the previous 

literature. 

In all three empirical cases, Chapters 2, 3, and 4, the stationarity properties of the 

economic time series are of great importance for the techniques that are used. The issue of 

homoscedasticity in the context of an ARIMA framework is raised in Chapter 3. The 

traditional Box-Jenkings methodology where a constant variance is assumed, is proven 

inadequate especially for forecasts and it is replaced by explicitly modeling the conditional 

variance of the time series. In Chapter 4, I test the balanced growth theory of development 

economics and at the same time try to test for the existence of a stable money demand 

function. In doing so, I use both the simple sum monetary aggregates that are very common 

in the literature, and also the Divisia and currency equivalent monetary indices that are not 

common at all but they are more appropriate, from a theoretical point of view, as the recent 

literature suggests. Using these different measures of monetary aggregates we can see how 

sensitive the results are to the different methods of aggregation. 

Chapter 2 of this thesis, deals with the theory of Purchasing Power Parity (PPP). 

Purchasing power parity and the law of one price is a core assumption in the field of 

international economics.  

Three different approaches have been used in the literature to test for PPP. The first 

approach, following Engle and Granger (1987), is to test whether the relative price ratio 

and the exchange rate are cointegrated. If they are, then this is viewed as evidence in 

support of PPP. Another similar approach is to use the Johansen (1988) multivariate 

maximum likelihood generalization of the Engle and Granger (1987) methodology. Again, 
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in this case whenever the domestic and foreign price levels and the exchange rates are 

found to be cointegrated and the cointegrating vector satisfies certain conditions, this is 

evidence in favor of PPP. Finally, the third approach is to test the real exchange rate for 

stationarity. If the real exchange rate is mean reverting then PPP holds, but if the hypothesis 

of a stochastic trend cannot be rejected, then PPP does not hold. 

Thus, the common theme, according to these studies, is that when the relative price 

level and the exchange rate are not level-stationary, cointegration is a necessary condition 

for PPP to hold. In Chapter 2 of this thesis, I test for PPP employing more recent techniques 

in time series analysis. Namely, I use the Fisher and Seater (1993) and the King and Watson 

(1997) methodologies. These methodologies allow the testing of long-run neutrality 

propositions taking advantage of recent advances in the theory of nonstationary regressors. 

According to these methodologies tests for such long-run run propositions can be 

constructed only if the variables in question satisfy certain nonstationarity conditions. Most 

of the previous literature ignored these requirements.  

Fisher and Seater (1993) used their methodology to test for long-run neutrality and 

superneutrality of money, and King and Watson (1997) tested not only for long-run 

neutrality and superneutrality of money but also the Fisher effect, and the long-run Phillips 

curve. More recently, Serletis and Koustas (1998) use the King and Watson (1997) 

methodology and long, low-frequency data to test the neutrality and superneutrality of 

money propositions in ten OECD countries and Koustas and Serletis (1999) use the same 

methodology to test the Fisher effect. 
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Testing long-run classical neutrality propositions, using the Fisher and Seater 

(1993) and King and Watson (1997) methodologies, requires that the series are 

nonstationary and do not cointegrate. 

Thus, although in the previous literature whenever the relative price ratio and the 

exchange rate were found to be non-stationary but not cointegrated, researchers concluded 

that PPP does not hold. However, using the Fisher and Seater (1993) and King and Watson 

(1997) methodologies, we may still find the long-run derivative or the long-run multiplier 

respectively, to be equal to one and therefore conclude that PPP holds in the long-run. That 

is, the absence of cointegration, that for the previous literature implied that PPP does not 

hold, in this case simply directs us to different testing procedures. In particular to the use 

of the Fisher and Seater (2993) and the King and Watson (1997) methodologies, according 

to which cointegration is not a sufficient nor a necessary condition for PPP to hold. 

In Chapter 3, I use the Box-Jenkings methodology to model the historical evolution, 

and produce in-sample forecasts for six energy future prices, crude oil, electricity, heating 

oil, natural gas, propane and unleaded gas, taking into consideration the conditional 

variance of the disturbances. In contrast to the unconditional variance, which refers to the 

variance of the population, or the variance of the sample, the conditional variance is a 

function of past realizations of shocks that are known in the present period. These past 

shocks tend to affect the volatility of the series in subsequent periods, and modeling the 

conditional variance allows one to produce better estimates of future volatility. Especially 

in financial time series data, it is more important to be able to forecast the conditional 

variance of an asset's returns than using the unconditional variance. The later describes the 

volatility of the asset over its life-span, information that may not be very useful to an 
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investor if her holding period is relatively small. A forecast of the variance of the asset a 

few periods ahead, given past history, will be more appropriate. 

The series that I use in Chapter 3, are found to be nonstationary and thus I apply 

the best fitted ARIMA representation. In doing so, I find that one of the assumptions of 

classical estimation and hypothesis testing procedures is violated in all six data series. That 

is, the variance of the error term is not stationary over time, as it is required, but we can 

observe volatility clustering' periods where the volatility of these future variables is high 

and other periods where it is low. Thus, the assumption of homoscedasticity does not hold. 

Formally testing, according to Engle (1982), I find evidence of ARC/GARCH processes in 

the data, which means that the conditional variance of the disturbances can be modeled and 

estimated, and use it to achieve a better fit and produce more accurate forecasts. 

The literature shows that, in general, models that take into account the conditional 

heteroscedasticity tend to perform better than other models (homoscedastic, autoregressive, 

or non-parametric), in short forecast horizons. 

In the effort to model the conditional heteroscedasticity, several specifications of 

the conditional variance are tested, with different lag structures for each one. I compare the 

goodness of fit of the ARCH, GARCH, ARCH-M, and EGARCH models, proposed by 

Engle (1982), Bollerslev (1986), Engle, Lilien and Robins (1987) and Nelson (1991) 

respectively. I select the best model using likelihood ratio tests and the Akaike and Swartz 

information critiria 

Finally the best fitted models are used for in-sample forecasts and the conditional 

variance provides the 95% confidence band for these estimates. The five-day ahead 
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forecasts of the unconditional and the conditional standard deviations axe then used for 

comparisons. 

In Chapter 4, I use a real business cycle model, to test for the balanced growth 

theory and at the same time for the existence of a stable money demand function. According 

to this theory, at the steady state of the economy, per capita output, consumption and 

investment grow at the same rate over time and thus, the great ratios, consumption - output 

and investment - output must be constant. This means that these three time series variables 

must satisfy certain restrictions in the steady state in order for the balanced growth theory 

to hold. In particular, they must not be stationary, and the order of integration of the three 

variables must be the same and they should also cointegrate so that the great ratios remain 

stationary. 

In the system that is estimated in this Chapter, the presence of a stable money 

demand function is examined as well. As I discussed above, for the balanced growth theory 

to hold, output must have a unit root. In order for a stable money demand function to exist 

this also means that money, interest rates, and output must be integrated of the same order 

and cointegrated. But what money measure should we use to test for the money demand 

function? The developments-in recent years in statistics and econometrics are not only 

constrained on how time series data are used in econometric models, but also these 

developments show how these data series must be constructed in order to actually reflect 

and measure properly a specific variable. 

Thus, the important breakthroughs in index number theory, show that some 

economic data are not constructed properly and these problems in measurement may have 

implications in tests of economic theory. One important variable that leading researchers 
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in index number theory have argued that is not measured correctly is money. The derivation 

of different money measures, from the narrowest definitions to the most broad ones, using 

simple sum techniques was proven to be wrong by the recent literature. Thus, in order to 

avoid the critique that firstly William Bamett voiced and later more researchers sided with, 

I use three different monetary aggregation procedures to distinguish between simple-sum, 

Divisia and currency equivalent monetary aggregates. Four different levels of aggregation 

for each of the three monetary aggregation procedures are used, for a total of twelve 

different time series for the money variable. In this fashion, I will be able to test the 

sensitivity of the results to different definitions of money. Whenever, a cointegrating 

relationship is found that is in accordance with the theory, variable shocks to the system 

are applied, to test the dynamics and the stability of the identified relations. 

In Chapter 5, I present the conclusions that are drawn from this thesis. 
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2.1 INTRODUCTION 

 The theory of Purchasing Power Parity (PPP) is the core assumption in the 

exchange rate models in international economics. In the case of fixed exchange rates it 

explains why the domestic inflation rate must be equal to the foreign inflation rate, and 

under a floating exchange rates regime provides a theory of exchange rate determination. 

In the later case which is the most interesting today, PPP provides a benchmark for policy 

makers and exchange traders. 

 The theory of purchasing power parity has been studied extensively recently using 

new advances in econometrics. In general these studies, and especially the ones that 

concern the floating exchange rates period, find little evidence in support of PPP. See for 

example, Adler and Lehman (1983), Patel (1990), Grilli and Kaminski (1991), Flynn and 

Boucher (1993), Serletis (1994), Serletis and Zimonopoulos (1997), and Dueker and 

Serletis (1997). Other studies, such as  Frenkel (1980), Diebold, Husted and Rush (1991), 

Glen (1992), Peron and Vogelsang (1992), Phylaktis and Kassimatis (1994), and  Lothian 

and Taylor (1996), using different groups of countries or longer periods of time or pairs of 

countries with big differences in their inflation rates, report evidence in support of PPP. 

 In testing the theory of PPP, some studies have applied Engle and Granger (1987) 

bivariate cointegration tests to the exchange rates and the relative price levels, as for 

example, Pippenger (1993). Other studies have used Johansen’s (1988) maximum 

likelihood extension to Engle and Granger’s methodology to test PPP in a multivariate 
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framework - e.g. Johansen and Juselius (1992), Kugler and Lenz (1993) and Serletis 

(1994).  

Another test for PPP is to test whether the real exchange rate has a unit root. If it 

does, then PPP is rejected - see for example, Phylaktis and Kassimatis (1994), Dueker and 

Serletis (1997), and Serletis and Zimonopoulos (1997). Serletis and Zimonopoulos (1997), 

examine the U.S. dollar and DM-based real exchange rates for 17 OECD countries and find 

that the unit root hypothesis for the real exchange rate cannot be rejected even when they 

allow for a possible change in the level, according to Perron and Vogelsang (1992). This 

result persists even when they test the dollar-based real exchange rate using the more 

general fractional integration tests. 

 In this paper I will test PPP using two recent approaches for testing long-run 

propositions that use recent advances in the theory of nonstationary regressors. These 

approaches show that meaningful tests can only be constructed if the variables satisfy 

certain nonstationarity conditions. Most of the existing literature ignores these issues and 

thus those tests are invalid. I will adopt the Fisher and Seater (1993) methodology in the 

context of PPP. Fisher and Seater (1993) used the long-run multiplier to test for long-run 

neutrality and superneutrality of money in an ARIMA framework. Also, I will use the King 

and Watson (1997) nonstructural bivariate autoregressive methodology. King and Watson 

test the neutrality and superneutrality of money, the Fisher Effect and the long-run Phillips 

curve - see Serletis and Koustas (1998), and  Koustas and Serletis (1998) for some 

applications. 

 In section 2, I briefly discuss the theory of PPP, in section 3 I investigate the 

integration and cointegration properties of the variables since this is crucial for testing PPP. 
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In sections 4 and 5 I test PPP using the Fisher and Seater (1993) and King and Watson 

(1997) approaches, respectively. Finally in section 6 I summarize the conclusions. 

2.2 THEORETICAL FOUNDATIONS OF PPP 

 

 Purchasing Power Parity is one of the best known relationships in international 

economics. According to PPP, the relationship between the exchange rate and the domestic 

and foreign price levels is given by: 

 

S A
P

Pt

t

t

 * , (2.2.1) 

 

where S t  represents the exchange rate in terms of domestic currency per unit of the foreign 

currency, Pt  is the domestic price level, Pt

*  is the foreign price level and A is an arbitrary 

constant. Thus, the data series that are needed to test PPP are the exchange rate S t , and the 

price ratio P Pt t/ * . Taking the logarithms the above relation becomes: 

 

s a p pt t t   * , (2.2.2) 

 

where lower-case letters denote the logarithms of  A, S t , Pt , and Pt

* . 
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 The assumptions underlying PPP is that the price indices in the two countries 

include the same goods with the same weights, and the goods are freely tradable in the two 

countries. Freely means that there are no impediments to international trade such as tariffs 

and quotas. Under these assumptions, if PPP does not hold, it would be possible to profit 

from arbitrage between the two countries. Although in the definition of PPP we assume 

that all goods that are included in the price indices are freely traded, there are some kinds 

of goods such as services that are non-traded. Another issue with respect to PPP is that it 

is unlikely that it will hold continuously at every point in time. As Cassel, who is 

recognized as the formulator of the PPP relationship, notes, a number of factors such as the 

international capital mobility in terms of speculation against certain currencies, and 

government interventions can cause the spot exchange rate to deviate from the PPP 

benchmark in the sort-run. For these reasons, we recognize that PPP is more likely to hold 

in the long-run.  

 In the effort to test PPP, many researchers have applied Engle and Granger (1987) 

bivariate cointegration tests to the spot exchange rate and the relative price level series. In 

these studies, when the two series are found to be cointegrated, this is viewed as evidence 

that PPP holds. In the opposite case, where the exchange rate and the price ratio series, do 

not cointegrate the researchers conclude that PPP does not hold. 

Following the Fisher and Seater (1993) reasoning on money neutrality applied to 

PPP, I point out that evidence that the exchange rate and the relative price series do 

cointegrate, is neither necessary or sufficient to accept PPP. Cointegration means that even 

if the two series are non-stationary, there is a linear combination of the two variables that 

is stationary. Cointegration alone does not tell us anything about PPP. We can reject PPP 
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in presence of cointegration if one of the following is true: the coefficient of the relative 

price when it is the independent variable in the cointegrating equation is statistically 

different than one, or when the source of the non-stationarity is not the relative price 

variable but the exchange rate. A Granger-causality test may be suitable to test this. 

On the other hand, rejection of cointegration does not mean that PPP does not hold. 

Cointegration is a linear relationship between two variables and PPP pertains to the long-

run relationship of these variables. So it is possible that although the exchange rate and the 

relative price do not cointegrate, there is a long-run effect of the relative price to the 

exchange rate. The Fisher and Seater (1993) and King and Watson (1997) tests that I 

employ in this paper, provide estimates of the long-run derivative of the relative price to 

the exchange rate when the two series are not cointegrated. If this long-run derivative is 

not statistically different than one then I conclude that PPP holds. 

From this discussion it becomes obvious that cointegration tests have nothing to 

say with respect to PPP per se and other long-run relationships. They only provide direction 

to what is the appropriate method to use in testing these relationships. 

Since for both the Fisher and Seater (1993) and the King and Watson (1997) 

procedures the integration and cointegration properties of the data, as we have seen, are of 

critical importance, I need first to investigate these properties of the data. 

 

2.3 INTEGRATION AND COINTEGRATION TESTS 

For both the Fisher and Seater (1993) and the King and Watson (1997) tests that I 

am going to use to test PPP, the integration and cointegration properties of the data are of 



 15 

great importance as it will be explained in the next two sections in the discussion of these 

testing procedures. The data that I use are the consumer price index ratios and the U.S. 

dollar-based exchange rates for 16 OECD countries. The CPI ratios are constructed as: 

 

P
CPI

CPIt

t

US t


,

,  (2.3.1) 

 

where CPI is the consumer price index in the respective country, and CPIUS is the consumer 

price index for the United States. The data are quarterly, ranging from the first quarter of 

1973 to the second quarter of 1997, and they are from the I.M.F. International Financial 

Statistics publications. Data before 1973 would not be appropriate for this analysis because 

of the fixed exchange rate system that was in effect in that period. 

2.3.1 UNIT ROOT TESTS 

 

In testing for stochastic trends (unit roots) in the autoregressive representation of 

each individual time series, I use two alternative unit root testing procedures to deal with 

the fact that some times the data are not very informative about whether or not there is a 

unit root. In the first and second column of panel A of Tables 2.1 and 2.2 I report the test 

statistics for the augmented Dickey-Fuller (ADF) test1 and the nonparametric (PP) test of 

Phillips and Perron (1988). The tests statistics are calculated using SHAZAM 7.0. I use the 

                                                             
 

 

1 See Dickey and Fuller (1981). 
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PP test since it is robust to a wide variety of serial correlation and time-dependent 

heteroscedasticity. For both the ADF and the PP tests the optimal lag length is taken to be 

as the highest significant lag order at the 95% significance level from either the 

autocorrelation function or the partial autocorrelation function of the first differenced series 

up to a maximum of N , where N is the number of observations. The regression equation 

for the augmented Dickey-Fuller test is: 

 

 Y t Y Yt t i
i

p

t i t    


    0 1 2 1
1

. (2.3.2) 

 

As an alternative to using the lags to correct for serial correlation, the Phillips-Perron 

method uses non-parametric correction. I first estimate equation (2.3.2) with p=0 and then 

the statistics are transformed to remove the effects of serial correlation on their asymptotic 

distribution. For the formula of the transformation of the statistics see Perron (1988, Table 

1, p.308-9). The critical values are the same as in the Dickey-Fuller tests. The Newey and 

West (1987) method is used to estimate the error variance from the estimated residuals as: 

 

1 2
2

1 11N N
s pt

s

p

t t s
t s

N

t

N

   



 

  ( , )  (2.3.3) 

 

where p is a truncation lag parameter and ( , )s p
s

p






1

1
. 
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 The critical value for the tests with a constant and time trend at a 95% significance 

level is 6.25. Based on this critical value and the test statistics reported in panel A of Table 

2.1, the null hypothesis of a unit root in the log levels cannot be rejected for all exchange 

rate series. This is consistent with the Nelson and Plosser (1982) argument that most 

macroeconomic time series have a stochastic trend. For the price ratios series the data are 

less informative. Based on the test statistics reported in panel A of Table 2.2, and the critical 

values, the null hypothesis of a unit root is rejected for the United Kingdom, Belgium, and 

Japan, in the case of the ADF test, and for the United Kingdom, France, Italy, Japan, 

Finland, Ireland, and Spain in the case of the PP test. Since the data on the price ratios are 

not very informative regarding the existence of a unit root for some of the series, for the 

testing I assume that all series have at least one unit root. In this respect the results for the 

United Kingdom and Japan should be interpreted with caution. 

 The tests for unit roots on the first differences of the log levels are not very 

informative for some of the series as well, as we can see from the results in panel B of 

Tables 2.1 and 2.2. Although with the PP test all series are found to be integrated of order 

one, using the ADF test some of the first differenced log levels appear to be non-stationary. 

It is unlikely that these macroeconomic series would have a higher order of integration than 

one, thus the decision here is to assume that all series are I(1). 

2.3.2 COINTEGRATION TESTS 

 

 As mentioned by King and Watson (1997), long-run multiplier tests are inefficient 

in the presence of cointegration.  To test the null hypothesis of no cointegration (against 
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the alternative of cointegration) I use the Engle and Granger (1987) two-step procedure. 

This involves regressing one variable against the other to obtain the (OLS) residuals e .  

 

s t p et t t     0 1 2
 . (2.3.4) 

 

A test of the null of no cointegration (against the alternative of cointegration) is based on 

testing for a unit root in the regression residuals e . For this testing I use both an ADF and 

a PP test. Then I redo the testing using in (2.3.4) pt as the dependent variable. 

 Table 2.3 summarizes the cointegration tests and reports the test statistics for the 

ADF test in panel A, and the PP test in panel B. The number of augmenting lags is chosen 

as discussed before. Based on these test statistics and the critical values at the 5% 

significance level, I conclude that the exchange rate and the price ratio do not cointegrate 

for all countries. Only for the case of Japan when p is used as the dependent variable there 

is evidence of cointegration but the null of no cointegration is accepted when p is the 

dependent variable. 

 Hence, the conditions necessary for the long-run multiplier tests to be meaningful 

[that is, exchange rate and price ratio series are I(1) and do not cointegrate] hold for all 

countries while the results for the United Kingdom and Japan should be interpreted with 

caution. 
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2.4  THE FISHER AND SEATER METHODOLOGY 

 

 Important macroeconomic hypotheses are dealing with the long run effects of some 

variables to other variables. The neutrality and superneutrality of money as well as the long 

run Phillips curve are some examples. In this paper, I examine the long run properties of 

PPP. I want to test whether changes in the relative price levels have an one to one effect on 

the nominal exchange rate. 

 Testing such hypotheses proved not to be trivial. Lucas (1972) and Sargent (1971) 

give examples where it is impossible to test long-run neutrality using reduced form 

econometric methods. In their examples they use rational expectations, short-run non-

neutrality and stationary variables. The effect of using such variables is that these data can 

not be used to test for long-run neutrality since they do not sustain changes that are 

necessary for long-run  effects. Lucas and Sargent with respect to this problem concluded 

that in order to test for long-run relationships it is important to construct complete 

behavioral models. Building on these arguments McCallum (1984) showed that low 

frequency band spectral estimators calculated using reduced form models suffered from 

the same problems that Lucas and Sargent exposed. In general, economists have not yet 

reached a consensus on the various long-run propositions. This of course is the result of 

the disagreement on the appropriate behavioral model for such research. 

 The results of the Lucas and Sargent critique are mainly driven from the stationarity 

property of the model’s variables. In models where the variables are not stationary and 

follow integrated processes we can test the long-run properties without identifying a 

complete behavioral model. This is concluded in Sargent (1971) and it is discussed in detail 
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in Fisher and Seater (1993). Even with non-stationary variables, long-run neutrality cannot 

be tested using a reduced form model. We must use the model’s “final form”, which shows 

the response of the model’s variables to structural shocks. 

 The econometric analysis of simultaneous equations models of the reduced form of 

a structural model cannot be identified econometrically. This is because we need a priori 

restrictions to identify the structural disturbances. I must clarify here what I mean by the 

different forms of the model. By the “reduced form” model I mean a set of regression 

equations in which each endogenous variable is expressed as a function of lagged values 

of itself and other exogenous variables. By “final form” I mean a set of equations where 

the endogenous variables are a function of current and lagged values of shocks and 

exogenous variables. Finally, by “structural model” I mean a set of simultaneous equations 

where the endogenous variables are a function of other endogenous variables, exogenous 

variables, lags of the variables and structural disturbances2. 

2.4.1 THE LONG-RUN DERIVATIVE 

 

Fisher and Seater (1993), define the long-run neutrality (LRN) and long-run 

superneutrality (LRSN) propositions in terms of a bivariate ARIMA model and use it to 

provide evidence on the LRN and LRSN properties of money. 

                                                             
 

 

2 See also Geweke (1986), Stock & Watson (1988), King, Plosser, Stock & Watson (1991) and Gali (1992). 
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 Here I will use the same methodology to test the long-run Purchasing Power Parity 

assumption. In particular, I am going to test whether exogenous permanent changes in the 

price ratio have a one-to-one permanent effect on the spot exchange rate. 

 Because PPP is a relationship that it is assumed to hold in the long-run, it does not 

depend on the short-run dynamics and structure of the economy. Thus, we can use tests for 

PPP that are structure-free. In doing this, the integration properties of the price ratio and 

the spot exchange rate will be very important. 

 Following Fisher and Seater (1993), I use a bivariate, stationary ARIMA 

representation: 

a L p b L s up

t

s

t t( ) ( )       (2.4.1) 

d L s c L p ws

t

p

t t( ) ( )       (2.4.2) 

 

where p P Pt t t ln( / )*  and s St t ln( ) . Pt  is the domestic price level at time period t and 

Pt

*  is the foreign price level. Let   ( )1 L .  x  represents the order of integration 

of variable x, so that if x is I( )  according to the terminology of Engle and Granger (1987), 

then  x   and also    x x 1.  I restrict a d0 0 1  , and b0  and c0  are not 

restricted. The errors ut  and wt  are assumed to be independently and identically 

distributed with mean zero and variances u

2  and w

2 , respectively.  

 When both the exchange rate and the price ratio are integrated of order one and 

  s p 1, the long-run derivative of s with respect to p can be written as: 
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LRD
s u

p u
s p

k

t k t

t k t

, lim
/

/








 

 
, (2.4.3) 

 

if lim /
k

t k tp u


   0 . If lim /
k

t k tp u


   0  then there are no permanent changes to the 

price ratio and the long-run response of the exchange rate to a permanent change in the 

price ratio is not defined. The sequence in the numerator measures the effect through time 

of an exogenous price change and the sequence in the denominator measures the effect of 

the exogenous change on the price ratio itself. So the LRD measures the long-run elasticity 

of the exchange rate with respect to the price ratio. Thus, if PPP holds in the long-run, I 

expect that LRDs p,  1 . According to Fisher and Seater (1993), from the solution of 

(2.4.1)-(2.4.2) we have:  

 

( ) ( ) / [ ( ) ( ) ( ) ( )]L d L a L d L b L c L   

 ( ) ( ) / [ ( ) ( ) ( ) ( )]L c L a L d L b L c L  . 

 

Thus, we can evaluate the limits as: 

 

lim / ( )
k

t k tp u


    1 ,  
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where  ( ) ( ) ( )L L Lp   1 1 .Similarly, 

 

lim / ( )
k

t k ts u


    1 , 

where ( ) ( ) ( )L L Ls   1 1  . 

 If the order of integration of the price ratio is not zero, then the LRD is defined and 

we can write: 

 

LRD
L L

s p

p s

L

,

( ) ( )|

( )


   

1

1

1


 (2.4.4) 

 

 From (2.4.4) we can see that the value of the LRD depends on the order of 

integration of the two variables. When     p s 1 , then LRDs p,  0 . When 

    p s 0  then from the solution to (2.4.1) - (2.4.2) and (2.4.4) we have: 

LRD c ds p, ( ) / ( ) ( ) / ( )  1 1 1 1 . (2.4.5) 

2.4.2 TESTING FOR PPP USING THE LRD 

 

 The case where   s p 1, is a very interesting case because we can test  PPP. 

Because both the price ratio and the spot exchange rate are integrated of order one, there 

are permanent changes to both s and p. In the case where   s p 2  we have 

permanent changes to the growth rates of both s and p. Equation (2.4.4) implies that 
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LRD s p , = LRDs p, .  This is an interesting implication because it means that tests on how 

the growth rate of the price ratio affects the growth rate of the exchange rate can be directly 

interpreted as tests of how a permanent change to the level of the price ratio affects the 

level of the exchange rate. The important implication of this is that if we find empirical 

evidence that supports the assumption of Relative PPP it can be directly interpreted as 

evidence for Absolute PPP when 2 ps . 

 When we have permanent innovations in both the price ratio and the exchange rate, 

or in other words when   s p 1, Fisher and Seater show that the LRD is given by 

equation (2.4.5). In this case, PPP holds if LRDs p, =1, so that an exogenous permanent 

change to the price ratio has a permanent effect on the exchange rate. Under the Fisher and 

Seater identification scheme with exogenous p, c(1)/d(1) can be interpreted as: lim
k

kb


 where 

bk is the coefficient from the equation: 

 

  



 




 








  s

t j k k

p

t j
j

k

j

k

kts a b p e
00

. (2.4.6) 

 

where   s p 1. Equation (2.4.6) can also be written as: 

 

     s s s a b p p p et t t k k k t t t k kt            1 1... ( ... )  
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s s s s s s

a b p p p p p p e

t t t t t k t k

k k t t t t t k t k kt

     

         

     

     

1 1 2 1

1 1 2 1

...

( ... )
 

 

s s a b p pt t k k k t t k      1 1( ) ,      for k = 1, … ,K (2.4.7) 

 

 We can use the data to estimate equation (2.4.7) and obtain estimates of bk  for 

different values of k and construct the corresponding confidence band. 

2.4.3 THE EMPIRICAL ESTIMATION 

 

 Estimating equation (2.4.7) for each of the 16 countries, and for values of k ranging 

from 1 to 30 as in Fisher and Seater (1993), I get the results that are shown in Figures 2.1 

to 2.16. In each graph, on the horizontal axis we have k, the number of lags for the 

corresponding regression. On the vertical axis we have the coefficient of the relative price 

bk , which is also the LRDsp . For every estimate of bk , I also graph the upper and lower 

values for the 95% confidence interval for bk  using Newey and West’s (1987) procedure. 

These confidence intervals are constructed from a t-distribution with T k/  degrees of 

freedom, where T is the number of observations. The degrees of freedom are T k/  instead 

of T-k since this is the number of non-overlapping observations3. If long-run PPP holds, 

then bk  should be equal to 1. Thus, on the graph I also include the line for which  bk =1. 

                                                             
 

 

3 See, for example, Hansen and Hodrick (1980). 
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Hence, there is evidence that supports long-run PPP if the bk =1 line is contained in the 

confidence bands for the different values of k.  

 According to the above, we can see from Figures 2.1 to 2.16 that the null hypothesis 

that bk  1 , cannot be rejected for any k [ , ]1 30  for Belgium, Denmark, Greece, Italy, 

the Netherlands, Norway, Spain, and Switzerland. Thus, I find strong evidence that PPP 

holds for these countries in the floating exchange rate period. For Austria, bk  1  can not 

be rejected for 1 20 k for higher values of k I reject the null. For Finland the null is 

only rejected for 20 27 k , for Germany it is rejected for k  24 , for Ireland and Japan 

is rejected only for 6 12 k  and 17 21 k  respectively. For the U.K. the null is 

rejected for 17 27 k . Finally for the case of Canada and France, we reject the null that 

bk  1 , for almost all k. 

 Hence, from these results I conclude that there is evidence that PPP holds for all 

countries investigated with the exception of Canada and France. 

2.5 THE KING & WATSON METHODOLOGY 

 

 In this section, I use the reduced form of the model under different a priori 

assumptions that identify the model and I pay attention to the long-run properties of the 

model under each identifying assumption. I identify the model using a wide range of 

assumptions in order to see the sensitivity of the results to the identifying assumptions. The 

robustness of the results to different sample periods is also investigated. I present the results 

both numerically and graphically. 
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2.5.1 ECONOMETRIC ISSUES 

 

 Consider a model which is linear in both the observed variables and the structural 

shocks. In particular, if the first differences of the nominal exchange rate and the relative 

price level are stationary the model’s final form can be written as: 

 

s L Lt s s t sp t

p      

( ) ( )  (2.5.1) 

p L Lt p p t pp t

p      

( ) ( )  (2.5.2) 

 

where  

t  is a vector of shocks other than the relative price level that affects the nominal 

exchange rate.  t

P  is a shock that permanently affects the price level (relative). And also,  

the other terms are defined similarly to (2.5.3). 

   pp t

p

pp

j

t j

pL( )   (2.5.3) 

 

The lag polynomials  s L( ) ,  sp L( ) ,  p L( )  and   pp L( )  incorporate the rich dynamics 

of the model. The long-run test of PPP that I want to conduct is summarized in the question: 

does an unexpected and permanent change in the relative price level p, cause a permanent 

one-for-one change to the nominal exchange rate s? If yes, then the Purchasing Power 

Parity assumption holds in the long-run. In equations (2.5.1) and (2.5.2)  t

p  is the 

exogenous change in the price level. Thus, the permanent effect of  t

p  to the price level 
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will be:    pp

j

t

p

pp t

p  ( )1 . Similarly, the permanent effect of  t

p  to the nominal 

exchange rate will be:    sp

j

t

p

sp t

p  ( )1 . Thus, the long run elasticity of the nominal 

exchange rate with respect to permanent exogenous change in the price level is: 

 




sp

sp

pp


( )

( )

1

1
.  (2.5.4) 

 

 Thus, if PPP holds,  sp  1. This means that the permanent shock to the relative 

price level has a permanent long-run effect on the nominal exchange rate. It is important to 

note here that we can test this long-run property that  sp  1 only when the price level 

variable is not stationary. The reason is that if the relative price level is stationary, a shock 

to the price level has no permanent effect in the level of p and so  pp ( )1 0 . In this case, 

the long-run elasticity of equation (2.5.4) is not defined. This is why Lucas and Sargent 

reached the conclusion that we need a complete behavioral model to test the long-run 

neutrality of money. In the case of money, we want to test whether permanent changes in 

the money supply will have a permanent effect on output. Of course, if the data for the 

money supply are stationary and there are no permanent changes, we cannot use these data 

to test for long-run neutrality. For the case of the long-run PPP, if there are no permanent 

changes in the historical data of the relative price level, I cannot use these data to test for 

the effects of a permanent change in the price level to the exchange rate. On the other hand, 
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if the relative price level is not stationary and it contains a unit root, then  pp ( )1 0  and 

the long-run elasticity of equation (2.5.4) is well defined. 

2.5.2 THE KING AND WATSON TESTING PROCEDURE 

 

 The reduced form of the model as it is described by equations (2.5.1) and (2.5.2) 

cannot be used to estimate the parameters using available data. I must first address 

econometric identification issues. King and Watson, approach this problem in an “unusual” 

way. Rather than using an a priori set of identifying assumptions and solve for the model’s 

parameters, they employ an eclectic approach. They investigate the long-run relationships 

by imposing a wide range of identifying restrictions. This approach provides evidence of 

the robustness of any conclusion to different identifying assumptions. 

 First, I assume that  ( , ) 

t t

p  is a vector of unobserved mean zero and serially 

independent random variables such that equations (2.5.1) and (2.5.2) can be interpreted as 

vector moving average model.  The estimation strategy begins by inverting the moving 

average model to form a vector autoregressive model (VAR). The VAR which is assumed 

to be of finite order is then analyzed as dynamic linear simultaneous equations model4. 

 The estimation using this procedure requires two additional sets of assumptions. 

The first, in order to transform the vector moving average model into a VAR and the second 

to econometrically identify the parameters of the VAR. These two sets of assumptions are 

closely related: the moving average model can only be inverted if the VAR includes enough 

                                                             
 

 

4 See Blanchard and Watson (1986), Bernanke (1986), Sims (1986) and also Watson (1994) for a survey. 
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variables to reconstruct the structural shocks. Thus, if ( , ) 

t t

p  is an n x 1 vector, then there 

must be n variables in the VAR. But the identification of an n-variable VAR requires n x 

(n-1) a priori restrictions. This means that the necessary number of identifying restrictions 

increases with the square of the number of structural shocks. King and Watson assume that 

n = 2, so that only bivariate VAR’s are required.  This is a fairly standard assumption and 

it is employed by many other researchers in the study of neutrality propositions. This also 

helps tractability: when n = 2 then only 2 identifying restrictions are necessary.  The 

drawback of this approach is that some of the results may be contaminated by omitted 

variables bias.  

 To derive the set of observationally equivalent models, let X s pt t t ( )   and so 

equations (2.5.1)-(2.5.2) become: 

 

X Lt t  ( ) ,  (2.5.5) 

 

where   

t t t

p ( )  represents the 2 x 1 vector of structural disturbances. Assume that 

( )z  has all of its zeros outside the unit circle so that we can invert  to obtain the VAR: 

 

 ( )L X t t   (2.5.6) 
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where  ( )L Lj j

j







0

 with 
j
 a 2 x 2 matrix. It is important here to note that since the 

invertibility of (L) requires that (1) has a full rank, this implies that s t and pt are both 

integrated processes and that they are not cointegrated. Unstacking the matrix form model 

I get: 

   s p a p a st sp t sp

j

t j ss

j

j

k

t j t

s

j

k

   





 
11

 (2.5.7) 

 

   p s a p a st ps t pp

j

t j ps

j

j

k

t j t

p

j

k

   





 
11

 (2.5.8) 

 

which is written under the assumption that the VAR in equation (2.5.6) is of order k. 

Equations (2.5.7)-(2.5.8) are a set of dynamic simultaneous equations. If     E t t( ) , 

then the reduced form of (2.5.6) is: 

 

X X et i
i

k

t i t 



1

  (2.5.9) 

 

where i i   0

1  and et t  0

1 . The matrices  i  and    are determined by the set of 

equations: 

 0

1 1   i i i k , ,...   (2.5.10) 
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 0

1

0

1     e t tE e e( ) .  (2.5.11) 

 

When there are no restrictions on coefficients on lags in equation (2.5.9), equation (2.5.10) 

imposes no restrictions on  0 . It serves to determine  i  as a function of  0  and  i . 

Equation (2.5.11) determines both  0  and    as a function of  e . Since  e  (a 2 x 2 

symmetric matrix) has only three unique elements, only three unknown parameters in  0  

and    can be identified. Equations (2.5.7)-(2.5.8) place 1’s on the diagonal of  0 , but 

only three of the remaining parameters var( ) t

p , var( ) t

s , cov( , ) t

p

t

s ,  ps  and  sp  can 

be identified. Following the standard practice in structural VAR analysis I assume that the 

structural shocks are not correlated. I place no restriction on the contemporaneous 

correlation of s and p so non-zero values for  ps  and  sp  allow both s and p to respond to 

 p
 and 

s
 shocks within the period. With the assumption that cov( , ) t

p

t

s  0 , only one 

additional identifying assumption is required in order to get the parameter estimates.  

 I can assume either that  ps  0  or that  sp  0 . These assumptions would imply 

that there are no contemporaneous effects of the relative price level and the exchange rate 

to each other. I can assume that PPP holds, and set  sp  1, or I can assume that  ps  0  

which is consistent with no long-run effect of the exchange rate to the relative price level. 

 Here, I employ the eclectic approach that King and Watson proposed, where instead 

of focusing on a single identifying restriction, I report results for a wide range of identifying 

restrictions. This approach is more informative in terms of the robustness of inference about 

the relationship between the relative price level and the nominal exchange rate. In particular 
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I iterate each of the parameters  ps ,  sp ,  ps , and  sp  within a reasonable range each time 

obtaining estimates of the remaining three parameters and their standard errors. These 

standard errors then are used to construct confidence intervals for the estimated long-run 

elasticity  sp . This approach is similar to what Sims (1989) and Blanchard (1989) have 

used for robustness calculations in VAR models. 

2.5.3 THE ESTIMATION PROCEDURE 

 

 Under each alternative identifying restriction, I construct the Gaussian maximum 

likelihood estimates using instrumental variable estimation. 

When  ps  is assumed known and it is used to identify the model, equation (2.5.8) 

can be estimated by ordinary least squares (OLS) by regressing: 

 

 p st ps t    onto    s pt i t i i

k

  
,

1
 

 

Then equation (2.5.7) cannot be estimated using OLS because one of the explanatory 

variables, pt , is potentially contemporaneously correlated with the error term  t

s  and the 

OLS estimates would be biased and inefficient. To overcome this potential problem I use 

instrumental variables and the instruments are:   s pt i t i i

k

  
,

1
 and the residuals from the 

estimated equation (2.5.8). These residuals are appropriate as instruments because of the 

assumption that the residuals from the two equations are uncorrelated or cov( , ) t

p

t

s  0 . 
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 The parameter of interest here is the long-run multiplier  sp  and this is equal to: 

 


sp

sp

ss

a




( )1

1
  (2.5.12) 

where a asp sp

j

j

k

( )1
0




  and  ss ss

j

j

k

a



1

. 

 When  sp  is assumed known, I only have to estimate equation (2.5.7). This is 

because the parameter of interest is  sp . Using OLS I  regress: 

 

 s pt sp t    onto    s pt i t i i

k

  
,

1
. 

 

Then  sp  is calculated according to (2.5.12). 

 When a value for  ps  is used to identify the model, I can use a similar procedure. 

First I rewrite equation (2.5.8) as: 

 

    p a s p a s a pt ps t pp t ps

j

j

k

t j pp

j

t j t

p

j

k

    




 




 ( ) ~ ~1 1
0

1

2 2

1

1

   (2.5.13) 
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where  pp pp

j

j

k





1

. Equation (2.5.13) replaces the regressors: 

( , , ... , , , ... , )    s s s p pt t t k t t k   1 1  

 

in equation (2.5.8) with the set of equivalent regressors: 

 

( , , , , ... , , , ... , )      s p s s s p pt t t t t k t t k      1

2 2

1

2

1

2

1

2

1 . 

 

In equation (2.5.13) the long-run multiplier is 


ps

ps

pp




( )1

1
, so that    ps ps pp ps( )1  

. Substituting this in equation (2.5.12) and rearranging I get: 

 

     p s p s s pt ps t pp t ps t ps

j

t j pp

j

t j t

p

j

k

j

k

       








     ( )1

2 2

1

1

0

1

. 

 (2.5.14) 

 

Equation (2.5.14) can be estimated using instrumental variables by regressing: 

 

 p st ps t   onto ( , , , ... , , , ... , )      p s s s s p pt ps t t t t k t t k      1

2 2

1

2

1

2

1

2

1 ,  
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using   s pt i t i i

k

  
,

1
 as instruments. I use instrumental variables in order to address the 

issue of potential contemporaneous correlation between st  and the error term. 

 Equation (2.5.7) can now be estimated by instrumental variables using the residuals 

of the estimated equation (2.5.14) with   s pt i t i i

k

  
,

1
. 

 When a value for  sp  is used to identify the model, this process is reversed. 

 

2.5.4 THE ESTIMATION RESULTS 

 

 Following the procedures described in the previous section, I use a wide range of 

identifying parameter restrictions on  ps ,  sp ,  ps , and  sp . Table 2.4 and Figures 2.17-

2.32 summarize the results. Table 2.4 (columns 2-4) shows the point estimates for  ps ,  sp

, and  ps  when I assume that PPP holds in the long-run, or equivalently when I impose 

 sp  1. The numbers in the parentheses represent the corresponding standard errors. 

Columns 5-7, show the intervals for each identifying parameter values for which PPP is 

rejected at the 95% confidence level. In Figures 2.17-2.32, I present the point estimates and 

the 95% confidence bands for the long-run multiplier  sp , for a wide range of plausible 

values of the other three parameters. In panel A, I iterate values for  ps , the 

contemporaneous effect of the exchange rate on the relative price. In panel B, I use a range 

of plausible values for  sp , the contemporaneous effect of the relative price on the 
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exchange rate. Clearly if PPP held at all times instantly, then this parameter would be equal 

to 1, and if the relative price has no effect on the exchange rate it would be equal to 0. For 

the estimation I use a range of values of   1 2 sp  to address even the case where the 

contemporaneous effect of the relative price to the exchange rate may be negative. Finally, 

in panel C, I iterate the values for the long-run multiplier of the exchange rate on the relative 

price,  ps . The range of values that are used is   5 5 ps . The estimates of  sp  and  the 

corresponding confidence bands are shown for ranges of the identifying parameters that 

standard errors are relatively small and do not explode. 

 The results from Figures 2.17-2.32, suggest that there is evidence that PPP holds in 

the long-run for all 16 OECD countries that I test here, since their 95% confidence bands 

for  sp  include the value 1 for all different values of the identifying restrictions presented 

in the graphs. The only exceptions for certain intervals, are Canada, Ireland and Norway: 

for Canada, the 95% confidence band of the long-run multiplier  sp  does not include 

 sp  1 for the range 0 2 0 3. .  ps  in panel A, and for the range 0 2 0 4. .  ps  in panel 

C. For Ireland, the 95% confidence band lies above  sp  1 for    0 7 0 2. . ps  in panel 

A and  ps  0 7.  in panel C. Finally for Norway the values for which PPP is rejected in 

the long-run is for  ps  01.  in panel A and the interval 0 3 0 4. .  ps  in panel C. 

2.6 CONCLUSIONS 

 

 In this paper I have tested for PPP, the hypothesis that a change in the relative prices 

between two countries has a one-for-one effect on the exchange rate. I used quarterly data 
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for the floating exchange rates period 1973:1 to 1997:2, for 17 OECD countries from the 

IMF publications International Financial Statistics. For the testing I used a bivariate log-

linear ARIMA framework as described in Fisher and Seater (1993), and the non-structural 

bivariate autoregressive methodology of King and Watson (1997), paying particular 

attention to the integration and cointegration properties of the data, since meaningful tests 

critically depend on such properties for both testing procedures. The results show that there 

is strong evidence that PPP holds in the long-run for all countries except for Canada and 

France when the Fisher and Seater (1993) methodology is used, and for all countries except 

small intervals of the identifying parameters for Canada, Ireland and Norway when the 

King and Watson (1997) procedure is employed. Hence, in this paper, I contradict the 

results of other researchers that rejected PPP when the exchange and the relative price 

series were not cointegrated. In both the methodologies that I use, non cointegration is used 

to specify the appropriate restrictions that are used to test for PPP. 
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TABLE 2.1 

          

       UNIT ROOT TEST RESULTS IN THE EXCHANGE RATE VARIABLES   

          

               A. Log levels  B. First diffrences of log levels   

          

              Test Statistics             Test Statistics   

Country 

Sample 

Period   ADF PP   ADF PP   Decision 

Austria 1973:1 - 1997:2 2,86 2,53  6,57 44,00  I(1) 

Belgium 1973:1 - 1997:2 2,24 1,46  5,71 38,64  I(1) 

Canada 1973:1 - 1997:2 2,20 1,33  4,52 43,24  I(1) 

Denmark 1973:1 - 1997:2 1,81 1,34  6,91 38,39  I(1) 

Finland 1973:1 - 1997:2 3,24 1,87  4,28 30,97  I(1) 

France 1973:1 - 1997:2 1,18 1,33  4,85 37,07  I(1) 

Germany 1973:1 - 1997:2 2,37 2,45  6,52 44,57  I(1) 

Greece 1973:1 - 1997:2 2,10 1,04  5,73 40,50  I(1) 

Ireland 1973:1 - 1997:2 2,61 2,21  5,44 35,06  I(1) 

Italy 1973:1 - 1997:2 1,83 1,92  5,11 33,98  I(1) 

Japan 1973:1 - 1997:2 2,64 3,02  6,88 35,05  I(1) 

Netherlands 1973:1 - 1997:2 2,63 2,18  6,38 40,91  I(1) 

Norway 1973:1 - 1997:2 2,42 2,38  3,64 44,38  I(1) 

Spain 1973:1 - 1997:2 0,96 1,08  3,18 32,15  I(1) 

Switzerland 1973:1 - 1997:2 3,27 3,45  7,18 44,28  I(1) 

U.K. 1973:1 - 1997:2 5,53 2,79  4,01 35,49  I(1) 

                    

NOTES: The ADF and PP test critical value with a constant and a time trend with 5% significance level is 6.25.   
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TABLE 2.2 

          

 UNIT ROOT TEST RESULTS IN THE RELATIVE PRICE VARIABLES    

          

               A. Log levels  B. First diffrences of log levels   

          

              Test Statistics             Test Statistics   

Country Sample Period   ADF PP   ADF PP   

Decisio

n 

Austria 1973:1 - 1997:2 2,42 1,58  4,83 44,30  I(1) 

Belgium 1973:1 - 1997:2 6,54 1,53  8,49 10,13  I(1) 

Canada 1973:1 - 1997:2 2,12 2,57  7,24 17,22  I(1) 

Denmark 1973:1 - 1997:2 1,98 5,83  5,60 52,91  I(1) 

Finland 1973:1 - 1997:2 4,79 12,61  3,62 20,09  I(1) 

France 1973:1 - 1997:2 2,37 11,00  2,95 16,80  I(1) 

Germany 1973:1 - 1997:2 3,03 4,90  5,75 20,76  I(1) 

Greece 1973:1 - 1997:2 2,26 0,61  2,23 66,44  I(1) 

Ireland  1973:1 - 1997:2 3,91 13,17  4,81 32,86  I(1) 

Italy 1973:1 - 1997:2 2,58 14,16  7,38 22,17  I(1) 

Japan 1973:1 - 1997:2 10,79 21,19  3,62 25,60  I(1) 

Netherlands 1973:1 - 1997:2 2,41 0,50  6,44 22,63  I(1) 

Norway 1973:1 - 1997:2 1,97 0,57  5,43 16,99  I(1) 

Spain 1973:1 - 1997:2 4,70 12,82  6,27 28,84  I(1) 

Switzerland 1973:1 - 1997:2 5,98 5,10  3,49 17,48  I(1) 

U.K. 1973:1 - 1997:2 9,38 11,19  5,77 36,05  I(1) 

NOTES: The ADF and PP test critical value with a constant and a time trend with 5% significance level is 6.25.    
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TABLE 2.3 

         

          COINTEGRATION TEST RESULTS   

         

                ADF Test                 PP Test 

 Integration Order        Dependent variable        Dependent variable 

         

Country <s> <p>   s p   s P 

Austria 1 1  -2,48 -2,92  -2,33 -0,94 

Belgium 1 1  -2,09 -3,64  -2,24 -1,57 

Canada 1 1  -2,08 -1,66  -1,75 -0,24 

Denmark 1 1  -2,06 -1,24  -2,20 -1,83 

Finland 1 1  -2,37 -2,39  -2,23 -1,48 

France 1 1  -2,07 -1,27  -2,22 -1,43 

Germany 1 1  -2,42 -1,93  -2,08 -0,89 

Greece 1 1  -2,33 -1,74  -2,04 -1,40 

Ireland 1 1  -2,11 -1,44  -2,22 -2,31 

Italy 1 1  -1,90 -0,99  -2,50 -1,17 

Japan 1 1  -2,83 -4,51  -1,59 -4,95 

Netherlands 1 1  -2,33 -2,73  -2,47 -0,94 

Norway 1 1  -2,22 -2,38  -1,96 -0,72 

Spain 1 1  -1,44 -1,60  -1,68 -1,01 

Switzerland 1 1  -2,41 -2,33  -2,88 -0,85 

U.K. 1 1  -2,84 -2,77  -1,62 -2,12 

                  

NOTES: <x> represents the order of integration of x, based on the resukts reported in Tables 1 and 2. The ADF 

and PP test critical value with a constant and a time trend with 95% confidence level is -3.78. The null hypothesis is no 

cointegration. 
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TABLE 2.4 

                    ESTIMATED VALUES OF THE PARAMETERS IMPOSING PPP  

        

        

                      Estimates Imposing  

 

  
 

 

 

   Rejection of  
 

     in 95% confidence interval 

Country 

 

 
 

 

 
 

 

 

 

 
 

 

 
 

 

 
 

Austria -0.024 (0.024) 6.883 (5.304) 0.022 (0.150)  - - - 

Belgium -0.034 (0.012) 4.870 (4.376) 0.110 (0.107)  - - - 

Canada -0.048 (0.031) 0.855 (1.449) -0.230 (0.145)  [0.2, 0.3] - [0.2, 0.4] 

Denmark -0.034 (0.012) 1.997 (2.512) 0.018 (0.268)  - - - 

Finland -0.038 (0.019) 2.590 (3.823) -0.142 (0.108)  - - - 

France 0.035 (0.010) -3.710 (7.979) 0.283 (0.112)  - - - 

Germany -0.065 (0.017) 6.918 (5.637) -0.027 (0.164)  - - - 

Greece -0.068 (0.037) 0.613 (1.376) 0.143 (0.207)  - - - 

Ireland 0.097 (0.034) -3.116 (1.881) 0.402 (0.184)  [-0.7, -0.2] - [-5, -0.7] 

Italy 0.030 (0.016) -1.227 (3.122) 0.246 (0.122)  - - - 

Japan -0.059 (0.015) 3.795 (3.223) -0.001 (0.129)  - - - 

Netherlands -0.070 (0.018) 6.696 (6.169) -0.039 (0.160)  - - - 

Norway -0.041 (0.019) 1.112 (2.214) -0.153 (0.136)  - - [0.3, 0.4] 

Spain -0.145 (0.044) 3.139 (2.754) -0.026 (0.215)  - - - 

Switzerland -0.060 (0.015) 8.050 (9.729) -0.084 (0.136)  - - - 

U.K. -0.024 (0.024) -0.107 (2.123) 0.022 (0.150)  - - - 

                

NOTES: All models include six lags of the relevant variables. Standard errors of the estimates are shown in parentheses. 
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 Figure 2.17. PPP Tests for Austria    Figure 2.18. PPP Tests for Belgium 

        A.  95% Confidence intervals for γsp as a function of λps A.  95% Confidence intervals for γsp as a function of λps 
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        C.  95% Confidence intervals for γsp as a function of γps C.  95% Confidence intervals for γsp as a function of γps 
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 Figure 2.19. PPP Tests for Canada    Figure 2.20. PPP Tests for Denmark 

        A.  95% Confidence intervals for γsp as a function of λps  A.  95% Confidence intervals for γsp as a function of λps 
 

 
 

            

             

             

            
 

             

             

             

             

             

             

             

        B.  95% Confidence intervals for γsp as a function of λsp B.  95% Confidence intervals for γsp as a function of λsp 
 

 
 

            

             

             

            
 

             

             

             

             

             

             

             

        C.  95% Confidence intervals for γsp as a function of γps C.  95% Confidence intervals for γsp as a function of γps 
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 Figure 2.21. PPP Tests for Finland    Figure 2.22. PPP Tests for France  

        A.  95% Confidence intervals for γsp as a function of λps  A.  95% Confidence intervals for γsp as a function of λps 
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        C.  95% Confidence intervals for γsp as a function of γps C.  95% Confidence intervals for γsp as a function of γps 
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 Figure 2.23. PPP Tests for Germany   Figure 2.24. PPP Tests for Greece  

        A.  95% Confidence intervals for γsp as a function of λps  A.  95% Confidence intervals for γsp as a function of λps 
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        C.  95% Confidence intervals for γsp as a function of γps C.  95% Confidence intervals for γsp as a function of γps 
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 Figure 2.25. PPP Tests for Ireland    Figure 2.26. PPP Tests for Italy  

        A.  95% Confidence intervals for γsp as a function of λps  A.  95% Confidence intervals for γsp as a function of λps 
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        C.  95% Confidence intervals for γsp as a function of γps C.  95% Confidence intervals for γsp as a function of γps 
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 Figure 2.27. PPP Tests for Japan    Figure 2.28. PPP Tests for Netherlands 

        A.  95% Confidence intervals for γsp as a function of λps  A.  95% Confidence intervals for γsp as a function of λps 
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        C.  95% Confidence intervals for γsp as a function of γps C.  95% Confidence intervals for γsp as a function of γps 
 

 
 

            

             

             

             

 Figure 29. PPP Tests for Norway   Figure 30. PPP Tests for Spain  

Figure 2.29. PPP Tests for Norway  Figure 2.30. PPP Tests for Spain 
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        A.  95% Confidence intervals for γsp as a function of λps  A.  95% Confidence intervals for γsp as a function of λps 
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        C.  95% Confidence intervals for γsp as a function of γps C.  95% Confidence intervals for γsp as a function of γps 
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 Figure 2.31. PPP Tests for Switzerland   Figure 2.32. PPP Tests for the U.K. 

        A.  95% Confidence intervals for γsp as a function of λps   A.  95% Confidence intervals for γsp as a function of λps 
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        C.  95% Confidence intervals for γsp as a function of γps C.  95% Confidence intervals for γsp as a function of γps 
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MODELLING AND FORECASTING VOLATILITY 

IN ENERGY MARKET FUTURES 
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3.1 INTRODUCTION 

The conventional econometric models that are used to describe the evolution of a time 

series over time and to produce reliable forecasts for the future assume that the variance of 

the series in question is constant over time, or in other words that the errors are 

homoskedastic. Many economic time series do not demonstrate a constant variance over 

time, but we observe volatility clustering, periods during which volatility is relatively high 

and other periods where volatility is low. Traditional econometric modeling and forecasting 

techniques would estimate the variance from the sample in hand and use it to describe the 

properties of the time series in question as well as for producing forecasts. Recent 

developments in the field of econometrics allow us to distinguish between the 

unconditional and the conditional variance of a time series. The unconditional variance 

refers to the population variance or the variance of the whole sample in hand, while the 

conditional variance depends on past realizations of shocks that are known at the present 

period. 

In many cases it is important to be able to forecast the conditional variance of a series. 

For example, when an investor is trying to decide whether or not to hold an asset for one 

period, she is interested in both the expected rate of return of the asset and its expected 

variance in order to optimize her portfolio. In this case the unconditional variance-i.e. the 

population variance of the series-is of little importance to her if she plans to hold the asset 

for only one period. The conditional variance, based on the information set t  which 

includes the past realizations of the conditional variance and prices will be more 

appropriate for this decision. Models that use the conditional variance for estimation and 
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forecasts, can better take into account the observed heteroskedasticity and other non-linear 

processes in the error term. 

 In recent years, the most important innovation in modeling the volatility in 

economic time series, was the work by Engle (1982) who introduced the autoregressive 

conditional heteroskedasticity or ARCH, to model the conditional variance.   

In this paper I use the Box-Jenkins methodology to model the time series properties of 

six energy market futures prices. These are crude oil, electricity, heating oil, natural gas, 

propane, and unleaded gas. These series are characterized by periods of high volatility and 

periods of relative tranquility as it is shown below, which is typical of ARCH processes in 

the error structure. Thus, I also employ and compare the ARCH, GARCH, ARCH-M, and 

EGARCH methodologies introduced by Engle (1982), Bollerslev (1986), Engle, Lilien and 

Robins (1987), and Nelson (1991) respectively in order  to model the conditional variance 

of the series. These models are then used for in-sample forecasts of the mean and the 

conditional variance for each of the six series.  

In section 2 I describe the data that are used in this paper, in section 3 I discuss the 

methodology that will be used, in section 4 is the empirical estimation of the best fitted 

models, in section 5 I produce in-sample forecasts for the six series and finally in section 

6 I conclude. 

3.2 THE DATA 

 The data for this paper are daily closing prices for energy commodities futures. Six 

series are studied and the samples are as follows: crude oil from 30-3-83 to 23-1-98, 

electricity from 1-4-96 to 23-1-98, heating oil from 2-6-80 to 23-1-98, natural gas from 3-
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4-90 to 23-1-98, propane from 21-8-87 to 23-1-98 and unleaded gas from 3-12-84 to 23-1-

98.  

For all six series I use the logs of the levels and since the estimation and forecasts 

as I will show later require the first differences of the logged series, in Table 3.1 I present 

the summary statistics for the first differences of the data. We can see that the null 

hypothesis of normality according to the Jarque-Berra statistic is rejected for all series. In 

Figures 3.1-3.6 I graph the logs of the six energy series. From these figures we observe that 

the low moments for these series do not seem to be constant over time. Specifically, the 

mean does not seem to be constant over time and thus I will test for the presence of 

stochastic trends to these data series. The variances also do not seem to be constant as we 

observe periods of high volatility and relative tranquility in the respective graphs. This 

points to the direction of ARCH/GARCH effects in the data and I will formally test in 

section 4 for the presence of such processes, after the identification of the most appropriate 

autoregressive model. 

3.3 MODELING VOLATILITY IN ECONOMICS TIME SERIES 

 

 The assumption in conventional econometrics is that the variance of the error term 

is constant, or in other words that the disturbances are homoskedastic. However, observing 

the actual series we can find periods of relative tranquility and other periods where there is 

unusually large volatility. Thus, the assumption of homoskedasticity is not appropriate. In 

terms of economic forecasts, it may be very important to forecast the conditional variance 

of a series: for an asset holder who plans to hold the asset for some short period of time, 

the unconditional (or the long-run) variance is of little importance. The unconditional 
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variance provides information about the volatility and risk of the asset over its lifetime. An 

estimate of the variance of the underlying asset for the investor’s holding period, given past 

history, would be more appropriate. 

3.3.1  ARCH PROCESSES 

 

 Engle (1982) using a model of the U.K. inflation shows that large and small forecast 

errors tend to appear in clusters. This suggests that the variance of the forecast error has a 

form of heteroskedasticity that depends on previous values of the error term. He called this 

type of heteroskedasticity autoregressive conditional heteroskedasticity (ARCH). This 

form of heteroskedasticity applies to either ARMA, ARIMA or regression models. Engle 

(1982) proposed the following form of an ARCH process: 

 

2

110  ttt   (3.1.1) 

 

where t  is a white noise process with the property that 2
 =1 and also that t  and 1 t  

are independent of each other and 0 , 1  are constants such that 00   and 10 1 

. Considering now the properties of the }{ t  sequence we can see that it has a mean of zero 

and its elements are not correlated. Taking the unconditional expectation of t  we have: 

 

])([ 2/12

110  ttt EE  
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0)( 2/12

110  tt EE   (3.1.2) 

 

since 0 tE . Also since 01  ttE  it follows that 

 

001   iE tt .  (3.1.3) 

 

The unconditional variance is: 

)]([ 2

110

22

 ttt vEE  

)( 2

110

2

 tt EE  

2

110  tE  

 

and since 2

1

2

 tt EE , because the unconditional variance is identical, we have 

 

)1/( 10

2 tE .  (3.1.4) 

The above proofs show that the unconditional mean and variance of the disturbance are 

unaffected by the ARCH process given by equation (3.1.1). Similarly the conditional mean 

of t  is: 

0)(,...),|( 2/12

11021   ttttt EEvE . (3.1.5) 
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Thus, so far the introduction of the ARCH process in (3.1.1) does not seem to affect the 

mean, variance and the conditional mean of the error term and all autocovariances are zero. 

Now we consider how the ARCH process affects  the conditional variance. Since 12 v
, 

the variance of t  conditional on the past history 1 t , 2 t , … is 

 

2

11021

2 ,...),|(   ttttE .  (3.1.6) 

 

In (3.1.6) we can see that the conditional variance depends on the realized and known 2

1 t

. The higher the disturbance in the previous period is the higher the conditional variance 

will be. The conditional variance of equation (3.1.6) follows an autoregressive process 

which is denoted as ARCH(1). Because the conditional variance must always be positive, 

we have to put restrictions on the coefficients 0  and 1  which have to be positive. Also 

in order for (3.1.6) to be convergent we need that 10 1  . 

 The important features of the ARCH process are that both the conditional and the 

unconditional mean of the error term are zero, the unconditional variance is constant, and 

the errors are not serially correlated since for 0s , 0 sttE . But the errors are not 

independent from each other. The ARCH process introduces a correlation of the errors 

through their second moments. This makes the errors conditionally heteroskedastic and the 

underlying time series an ARCH process as well. If the process that generates a random 

variable y can be described as 
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ttt yy  110   (3.1.7) 

 

then the t+1 period forecast of y will be 

 

ttt yyE 101  .  (3.1.8) 

 

To explain the dynamics of this simple model, when the error term in (3.1.7) has an ARCH 

process as described in (3.1.1), consider an unusually high (in absolute terms) shock to tv

. This will produce a high disturbance 1 t  and a high variance for the error. The higher 1  

is the more y will depart from its mean, thus increasing its variance. The higher 1  is, the 

more persistent the deviation from the mean will be and the higher the variance of y. 

Specifically, the conditional mean and variance of y will be: 

 

1101   ttt yyE   (3.1.9) 

and 

2

110121 )(,...),|(   tttttt yyEyyyVar  

2

1 )( ttE  
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2

110 )(  t
. 

So the conditional variance of ty  has a minimum value of 0  and it is positively related 

to 1  and 1 t . 

 The above autoregressive process for the error term is called an ARCH process of 

order one, or an ARCH(1) process, since it includes only one lagged value of t . Engle 

(1982) considers the more general case of q lags for the error term: 

 





q

j

jtjtt v
1

2

0 .  (3.1.10) 

 

In this case the error term t  is modeled as an autoregressive process of order q, so that all 

shocks from 1 t  to 
qt  have a direct effect on t . 

3.3.2 THE GARCH MODEL 

 Bollerslev (1986) extended Engle’s work and allowed the conditional variance to 

be an ARMA process. In this case the error term is 

 

ttt hv  

where 
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






 
p

j

jtj

q

j

jtjt hh
11

2

0 . (3.1.11) 

 

Again in this case tv  is assumed white noise and since it is not correlated with past values 

of t , the conditional and unconditional means of t  are still zero. The conditional variance 

now is given by th  in equation (3.1.11). This is the generalized ARCH(p,q) model that is 

denoted GARCH(p,q). The GARCH(p,q) model allows for both moving average and 

autoregressive components in the conditional variance. It is clear that a GARCH(0,1) 

model is equivalent to the ARCH(1) model. In order for the GARCH conditional variance 

to be finite the characteristic roots of the distributed lag polynomials in (3.1.11) must all 

lie within the unit circle. If we represent the GARCH(p,q) process as 

 

ttt hLLh )()( 2

0  , 

where 

q

q LLLL  2

21)( , 

p

p LLLL  2

21)(  

and L is the lag operator. Then Bollerslev (1986) shows that the GARCH process is 

stationary if 1)1()1(  . Here, )1( and )1(  are the polynomials )(L  and )(L  

evaluated at L=1: 
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q ...)1( 21
. 

 

The more general GARCH model can help us capture the same dynamics of the variance 

from using a high order ARCH process. The advantage of this is that we have to impose 

fewer restrictions and it is easier to identify and estimate. 

3.3.3 TESTING FOR  ARCH AND GARCH PROCESSES 

 

 Engle (1982) proposes a test for ARCH disturbances in both autoregressive and 

regression models. In the case of an AR estimation, first we estimate the appropriate AR(n): 

tntnttt yayayaay   ...22110 . (3.1.12) 

Then we obtain the square of the fitted errors 2ˆ
t . We regress these squared errors on a 

constant and q lagged values, so that we estimate: 

 

22

22

1

110

2 ˆ...ˆˆˆ
qtqttt   . (3.1.13) 

 

If there are no ARCH or GARCH effects then the coefficients 1  to 
q  must all be equal 

to zero and the explanatory power of the equation must be very low, which is translated 

into a low 
2R . If the sample has T observations of disturbances then the statistic 

2TR  will 

be distributed under the null of no ARCH or GARCH errors as a 2

q  distribution. If 
2TR  

is sufficiently large we will reject the null of no ARCH errors. 
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 Specifying the appropriate conditional variance in the case of rejecting the null of 

no ARCH errors as 





q

j

jtjth
1

2

0 ,  (3.1.14) 

we then obtain the residuals of equation (3.1.14) and we regress them on a constant and 

1th . Again the statistic 
2TR  has a 2  distribution with one degree of freedom under the 

null of no GARCH process. 

 

3.3.4 THE ARCH-M MODEL 

 

 Engle, Lilien, and Robins (1987) use the ARCH model to allow for the mean of a 

sequence to depend on its conditional variance. These models are called ARCH-M models 

and they are best suited for the modeling of asset returns. Engle, Lilien, and Robins use a 

model of excess returns described as 

 

ttty    (3.1.15) 

where ty  is the excess return from holding a long-term asset relative to the one period 

treasury bill or the risk free rate, t  is the risk premium that the typical risk averse investor 

needs in order to willingly hold the risky asset, and t  is the unforecastable error. In period 

t-1 the expected excess return on the risky asset must be equal to the risk premium so that 

ttt yE 1 .  (3.1.16) 
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In financial economics, the risk of an asset is measured by the variance of its returns. Engle, 

Lilien, and Robins, assume that the risk premium in equation (3.1.15) is an increasing 

function of the conditional variance of the unforecastable error t . So now 

 

0,  tt h   (3.1.17) 

where th  is the conditional variance of t  that follows an ARCH(q) process of the form 

 





q

j

jtjth
1

2

0 .  (3.1.18) 

 

In this fashion the conditional mean of the ty  sequence depends on the conditional variance 

of the shocks th . If the conditional variance is constant, then the ARCH-M model has a 

constant risk premium.  

 The form of the ARCH-M model is determined similarly to the ARCH and GARCH 

models with the use of the Lagrange multiplier test (LM). The test statistic TR2 for the LM 

test is distributed under the null of no ARCH-M effects as a 2  with degrees of freedom 

equal to the imposed restrictions. 
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3.3.5 THE EGARCH(p,q) MODEL 

 

 The ARCH and GARCH models are somewhat restrictive in the sense that they 

allow the conditional variance to be affected only by the size of past shocks and not their 

sign. Another problem with the models that we have seen thus far is that in the estimation 

of such processes we must impose additional  restrictions to the unconditional variance 

parameters so that the unconditional variance remains always positive and finite. ARCH 

and GARCH models assume that the conditional variance is a function only of the 

magnitude of the lagged residuals and not their signs i.e. only the size and not the sign of 

lagged residuals determines the conditional variance. This assumption is restrictive and 

these models are not well suited to capture the so-called “leverage effect”, first noted by 

Black (1976). Black noted that for equities, it is often observed that downward shocks to 

assets’ prices are followed by higher volatilities than upward shocks of the same 

magnitude. Because of these concerns Nelson (1991) introduced a more general form for 

the unconditional variance the exponential GARCH(p,q) or EGARCH(p,q): 
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In this setting, the conditional variance is expressed in logarithmic form so that it will 

always be positive and also the fourth term on the right hand side allows for the sign of the 

residuals to affect the conditional variance and in doing so it can capture the “leverage 

effect”. 
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3.4 EMPIRICAL ESTIMATION 

 In this section I will first examine the stationarity properties of the series using the 

augmented Dickey-Fuller (ADF) and the Phillips-Peron (PP) tests for unit roots. Then I 

specify the appropriate autoregressive model for each of the six series and estimate the 

conditional variance as an ARCH, GARCH and EGARCH process. Then I compare these 

alternative models for the conditional variance and select the best model for each series 

that will be later used for forecasting. 

3.4.1 TESTING FOR STOCHASTIC TRENDS IN THE DATA 

 It is important at this stage to examine the stationarity properties of the data and test 

for the presence of stochastic trends or unit roots. A stationary series has a constant mean 

and shocks to the series will not have permanent effects on the mean of the series. In this 

case the variable is mean reverting or stationary. In a series that has a stochastic trend or a 

unit root, a shock to the series at period t will have permanent effects. Such a series will 

have a non-stationary variance which will tend to infinity as t . For forecasting 

purposes this series will not revert to a constant mean even in very long horizons and the 

width of the confidence intervals of the forecasts will increase without bound as the forecast 

horizon increases. 

In testing for stochastic trends (unit roots) in the log levels of the original data, I 

use two alternative testing procedures as an attempt to deal with the fact that some of the 

series may not be very informative about the existence or not of a unit root. In columns 3 

to 5, of panels A and B of Table 2, I present the results of augmented Dickey-Fuller (ADF) 
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tests1 to the levels and first differences of the data. In columns 6 to 8, I present the 

alternative non-parametric Phillips-Perron (PP) tests of Phillips and Perron (1988) for the 

existence of a unit root. The ADF tests are conducted using the following regression: 
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where tz  is the series under consideration and m is selected large enough such that t  is 

white noise. The null hypothesis of a unit root is rejected if 2  is negative and significantly 

different than zero. The critical values are not the usual t-statistics but are those given by 

Fuller (1976). The problem with this testing is that the order of the  autoregression is not 

known. One way to overcome this is to use some information criterion to select the best 

model.  However since the samples that I have in hand are quite large, I follow Said and 

Dickey (1984) who showed that the ADF test is asymptotically valid if the order of the 

autoregression is increased to 
3/1T , where T is the sample size. 

An alternative way to using the augmenting lags to correct for serial correlation is the 

Phillips-Peron testing procedure that uses non-parametric correction. The PP test involves 

estimating (3.4.1) with m=0 and then the statistics are transformed to correct for serial 

correlation in their asymptotic distribution. For the transformation formula see Phillips and 

Peron (1988, Table 3.1, p. 308-9). The critical values for this test are the same as in the 

                                                             
 

 

1 See Dickey and Fuller (1981). 
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Dickey-Fuller tests. The Newey and West (1987) method is used to estimate the error 

variance from the estimated residuals as: 

 

1 2
2

1 11N N
s pt

s

p

t t s
t s

N

t

N

   



 

  ( , ) ,  (3.4.2) 

 

where p is the truncation lag parameter which is set in the estimation according to the 

Newey and West suggested value, and ( , )s p
s

p






1

1
. 

 In panel A of Table 3.2, we have the results of the unit root tests. With respect to 

the ADF test, for the crude oil, electricity and heating oil series the null hypothesis of a unit 

root cannot be rejected at the 5% significance level. For the natural gas, propane and 

unleaded gas series the null of a unit root is rejected at the same significance level. 

According to the PP test, the null hypothesis of a unit root cannot be rejected for any of the 

six series. Thus, for three of the series I get conflicting results from the two tests with 

respect to the existence of a unit root. Having in mind the Nelson and Plosser (1982) 

argument that most macroeconomic time series have a unit root, I conclude in column 9 of 

panel A, that all series have a stochastic trend. 

 Next, I test the first differences of the log series for the presence of a unit root. The 

results are shown in panel B of Table 3.2. In this case, the null hypothesis of a unit root is 

rejected for all six series, and with both tests. I conclude that the first differences of the 

logs are stationary. 

3.4.2 AR MODEL SPECIFICATION 
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Having concluded in the previous section that all six energy futures have a unit root, I 

will now use the first differences of the log series to select the best fitting autoregressive 

model (AR) for each of the series: 
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where ty  is the log of the series in question and m is the order of the autoregression. To 

select the number of AR lags in (3.4.3) for each series, I estimate (3.4.3) using m=1 and 

progressively increase the number of autoregressive lags until t  is not serially correlated. 

To test for autocorrelation in the residuals, I use the Ljung-Box Q-statistic. Then, I estimate 

several models with higher AR orders and choose the number of autoregressive lags, m, 

that minimizes the Akaike and Swartz information criteria, AIC and SIC respectively. 

Whenever the two information criteria select different orders of autoregression for a series, 

the fact that these models are nested, allows me to perform a likelihood ratio test (LR) to 

select the optimum number of lags. As an extra step, after selecting an AR(m) order 

according to the above, I overfit the model including additional lags and then perform both 

a LR and an F-test to determine whether these lags improve significantly the fit of the AR 

process. 

 Following this procedure, I find that for the crude oil, both the AIC and the SIC 

select an AR(10) model for which the probability of the Ljung-Box Q-statistic is 0.056. 

The LR-test for AR(10) against an AR(15) produces an LR statistic equal to 5.73. This is 

distributed under the null that AR(10) is correct, as a 2  with 5 degrees of freedom. The 
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probability of 5.73 is 0.333. Also an F-test of the null that 0... 1511   is equal to 1.14 

with a probability of 0.336. So I conclude that the correct AR specification for crude oil is 

an AR(10).  

Similarly, for electricity and unleaded gas both the AIC and SIC select an AR(4) and 

AR(10) model respectively, with the LR and F-statistics on overfitted models being 

statistically insignificant. For the heating oil the AIC selects an AR(14) while the SIC 

selects an AR(11). The likelihood ratio test between the two AR specifications provides a 

test statistic of 9.27 which has a probability of 0.02587. Thus, it is statistically significant 

at the 5% level. The F-test that the coefficients of the lags 12 through 14 are all equal to 

zero yields an F-statistic equal to 3.08 with probability 0.02623. Thus, I select the AR(14) 

model. For natural gas AIC and SIC select 23 and 14 lags respectively, with the LR and F-

test rejecting the adequacy of the AR(14) and selecting the AR(23). Finally for propane, 

the AIC and the SIC select 13 and 11 lags respectively and additional tests show that the 

AR(13) is the appropriate model. These results are summarized in Table 3.3. 

3.4.3 ESTIMATING THE APPROPRIATE ARCH MODEL 

 

Having already estimated the appropriate autoregressive model for each of the six 

series, we now need to formally test the residuals of those autoregressive models for the 

presence of ARCH processes. Visually inspecting the autocorrelation and partial 

autocorrelation functions of the residuals of the autoregressions, we do not find any 

evidence of autocorrelation  and the Ljung-Box Q(36) statistic is not significant for any of 

the series. From this we conclude that there is no linear dependence in the residuals of the 

autoregressions. However the Q2(36), which represents the Q-statistic for the squared 
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residuals is highly significant. This implies that there is higher order dependence in the 

residuals. The Q2-statistic is designed to pick non-linearities and the presence of 

conditional heteroscedasticity. Thus, now we have evidence for non-linearities in the data 

and conditional heteroscedasticity. I need to formally test for the presence of 

ARCH/GARCH processes in the residuals. Engle (1982) proposes the following Lagrange 

multiplier test for ARCH disturbances: I obtain the residuals from the autoregressions and 

I square them. Then, I regress these residuals against a constant and q lagged values of the 

squared residuals, so I estimate: 
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If there are no ARCH or GARCH effects then the estimated coefficients 1  through 
q  

should be equal to zero. Thus, this regression will have little explanatory power and the 

coefficient of determination R2 will be very low. If the sample size is T, under the null 

hypothesis of no ARCH errors, the test statistic TR2 converges to a 2

q  distribution. If TR2 

is sufficiently large, rejection of the null hypothesis that the coefficients of the lagged 

squared residuals are all equal to zero is equivalent to rejecting the null hypothesis of no 

ARCH errors. In Table 3.4, I present the results from the Lagrange multiplier tests for each 

series. I use one, two, five and ten lags. As it is obvious from the test statistics and the 

corresponding probabilities, I reject the null of no ARCH processes in the residuals for all 

series and all lag structures, with the exception of the electricity where the test statistic 
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appears to be insignificant at lags one and two. For higher lag orders, five and ten, we reject 

the null of no ARCH errors for electricity as well. Thus, I conclude that for all six series 

there exist ARCH processes in the residuals.  

With the above testing methodology we can detect the existence of conditional 

heteroscedasticity in the errors, but we cannot identify the specific order of the ARCH. To 

find the order of the ARCH(q) that best fits the data, I estimate an ARCH(q) model for 

each of the series, with q = 1,2, …,9. Then I report the AIC and SIC from each estimated 

model to help for the selection of the optimal order of ARCH. This estimation is performed 

using maximum likelihood estimation (ML). The advantages of the ML is that (a) it allows 

for joint estimation of the mean and variance equation. (b) we can use likelihood ratio tests 

of restrictions of the model. (c) consistency of the ML estimator for the parameters of the 

variance does not require the existence of fourth or higher moments of the data which is 

typically required for the consistence of the least squares (LS) estimator. 

 To identify q in the variance equation, I use the likelihood ratio test (LR). Under 

the null hypothesis that q is correct, the LR test statistic: 

 

)](max)([max2)( 1 qq LLqLR  
 (3.4.5) 

 

where 
q  is the parameter vector with q lags in the ARCH term, is asymptotically 

distributed as a 2  with 1 degree of freedom. So, if the LR statistic is significant this 

means that the q+1 lag specification in the ARCH is more appropriate than q, and I choose 
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the value of q for which the LR test statistic is not significant at 1%. In Table 3.5, I present 

the LR test statistic. The critical value at the 1% significance level with 1 degree of freedom 

is 6.63.  

According to this, the LR test statistic becomes insignificant at the 9th lag for crude 

oil, so the optimal lag length is 8. For electricity, the LR statistic becomes insignificant at 

the 4th lag, so we may choose 3 lags for the order of ARCH, but when we continue adding 

lags, the statistic becomes again significant at the 9th lag. To select between the ARCH(3) 

and ARCH(9) processes I perform an LR test between q=3 and q=9. The LR tests statistic 

is equal to 9.73 and the critical value at the 1% level with 6 degrees of freedom is 16.81. 

So we accept the null hypothesis that ARCH(3) is the correct specification.  For heating 

oil, the LR statistic is significant at all lag lengths, so I conclude that the correct length of 

ARCH lags is greater than 9. In the natural gas, we have a case similar to electricity. The 

3rd and 6th lags appear to be appropriate since the LR statistic becomes insignificant at the 

4th lag but it is significant again at the 6th lag. Again I employ a LR test between ARCH(3) 

and ARCH(6) which produces a tests statistic of 26.58, with a critical value at the 1% level 

with 3 degrees of freedom of 11.34. So, I reject the null and I select the ARCH(6) as the 

correct specification q. For propane all lags are highly significant and I conclude that the 

correct lag length q is greater than 9. Finally, the unleaded gas LR test suggests both the 

3rd and 6th lags for the q, and again a LR test between the two lag structures, ARCH(3) and 

ARCH(6), has a statistic of 83.57 with a critical value of 11.34. So, I conclude that the 

ARCH(6) is the most appropriate model.  

  I also use the value of the minimized AIC and SIC to select the best ARCH lag. 

When the number of observations is large, as in our samples, SIC penalizes additional 
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parameters much more than AIC, leading to more parsimonious models. Geweke and 

Meese (1981) show that asymptotically SIC correctly identifies an ARMA model, while 

AIC tends to overfit the model. There is no proof however that the ARCH model satisfies 

the conditions for this result. 

 In Table 3.6, I summarize the order of ARCH that is selected according to the LR 

tests, the AIC and SIC.   

3.4.4 FITTING AN APPROPRIATE GARCH MODEL 

As we have seen, Bollerslev’s (1986) GARCH model is a generalization of the pure 

ARCH model. The conditional variance is not assumed to depend only on the lagged values 

of squared residuals, but it is allowed to depend on lagged values of itself-an autoregressive 

component is introduced. In the previous section, I concluded that the appropriate lag 

structure for the ARCH representation of the conditional variance is relatively long with 

lags from 6 to greater than 9 with the exception of electricity where the best fitting model 

was an ARCH(3). In a GARCH(1,1) model:  
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if 1 <1, then the GARCH(1,1) model is actually equivalent to an ARCH model with 

infinite lags since from (3.4.6) we have 
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If we set 11   and use only a finite number of lags then we have an ARCH model with 

geometrically declining weights: 
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Thus, it is possible that a GARCH(1,1) representation will fit the energy data better. The 

added advantage of a GARCH(1,1) model is the more parsimonious representation which 

requires the estimation of only two additional parameters while with the ARCH models we 

found that many more parameters have to be estimated. 

 For every energy series I estimate the models GARCH(p,q) with p = 1, 2 and q = 

1,2. So, four different GARCH models are estimated for every series. These models are not 

all nested, so I cannot use a likelihood ratio test to select the best GARCH representation. 

Nonetheless, since all four models belong to the general class of GARCH(p,q) models I 

can use the AIC, SIC or the adjusted R2 for model selection. The problem with the adjusted 

R2 criterion is that it is valid only if the correct model is within the ones tested and it will 
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select the true model only 50% of the time. Because of these restrictions, I will rely on the 

AIC (1974) and SIC (1978) to select the best GARCH model. In Table 3.7, I present the 

AIC, SIC, adjusted R2, and the value of the maximized log-likelihood function for four 

different GARCH models of the six energy variables. All three criteria select the 

GARCH(1,1) as the best model except for natural gas where all three criteria select the 

GARCH(2,1) as the best fitting model. 

3.4.5 FITTING AN EGARCH(1,1) MODEL 

To address the restrictions of the ARCH and GARCH problems as it was discussed 

earlier I use Nelson’s (1991) exponential GARCH(1,1) or EGARCH(1,1), also inspired by 

Engle’s (1982) ARCH model. Now the conditional variance depends on both the size and 

the sign of lagged residuals and I model the conditional variance as 
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The log transformation insures that 2

t  remains non-negative for all t. In this case the 

impact of the most recent residual is now exponential rather than quadratic. In Table 3.8, I 

present the AIC, SIC, adjusted R2 and the maximized log-likelihood statistics from the 

estimation of an EGARCH(1,1) model for each of the six energy series. 

3.4.6 MODEL SELECTION 

Thus far, I have selected the best ARCH and GARCH specification and estimated an 

EGARCH(1,1) model for the six energy series. The next step is to choose which of the 

three different model specifications best fits the data. Comparing the ARCH and GARCH 
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models, these models are not nested, and thus, I cannot use a likelihood ratio test to select 

the best model. But both ARCH(q*) and GARCH(p*,q*)2 models belong to the larger 

GARCH(p,q) class, so I can use the AIC, SIC and adjusted R2 to select between the two.

 In Table 3.9, I present the AIC, SIC and the value of the maximized log-likelihood 

function for the ARCH(q*) and GARCH(p*,q*) models. For the cases of the heating oil 

and propane where the likelihood ratio test does not become insignificant even at the ninth 

lag, I use the statistics from the ARCH(9) model. Clearly for all six series the GARCH 

representation is superior to the ARCH according to both AIC and SIC. So for all series 

the selected model is a GARCH(1,1) with the exception of natural gas where it is 

GARCH(2,1). This result is somewhat expected as the long lag structures of the best fitted 

ARCH models imply that a GARCH(1,1) may be more appropriate as explained 

previously.  

 Having concluded that the GARCH(p*,q*) specification is superior to the 

ARCH(q*), the next step is to compare the GARCH(p*,q*) models with the EGARCH(1,1) 

that I have already estimated. The AIC and SIC in Tables 3.8 and 3.9, both select the 

GARCH(p*,q*) models for all energy series except for the natural gas where the 

EGARCH(1,1) model is selected.  

  

I also present the diagnostics on the standardized residuals from the 

GARCH(p*,q*) and  EGARCH(1,1) models. These are calculated as: 

                                                             
 

 

2 Where p* and q* represent the optimal lags as they were estimated in sections 4.3 and 4.4. 
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where t̂  are the residuals from the estimated model and th  is the estimated conditional 

variance. If the model is correctly specified then t  will have a mean of zero, variance one, 

and be iid. The diagnostics for the standardized residuals, mean, variance, skeweness, 

kurtosis and the Jarque-Berra statistic for normality, are presented in Table 3.10. The lower 

the Jarque-Berra statistic is, the closer the corresponding standardized residuals are to 

normality.  

 In order for the unconditional variance to exist in each of the estimated models, we 

need 0 , 1 , and 1 , all to be greater or equal to zero so that the unconditional variance 

is always positive. Also, the unconditional variance is finite if 
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models and  <1 in the EGARCH model. In Table 3.11, I present in panels A and B, the 

estimated coefficients on the conditional variance for both the GARCH(p*,q*) and the 

EGARCH(1,1) models respectively, and I test the hypotheses that 
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It is clear from columns eight and nine on panel A, that only in the cases of the electricity 

and unleaded gas we can reject the null hypothesis of an infinite unconditional variance. In 

the other four series we cannot reject the null hypothesis that 
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i =1, and thus the 

unconditional variance for these series will not be stationary. From column eight in panel 
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B, we can see that the null hypothesis of a non-stationary unconditional variance is rejected 

for all series except electricity. According to these test results, only three of the previously 

selected models appear adequate, and these are the GARCH(1,1) models for electricity and 

unleaded gas, and the EGARCH(1,1) model for natural gas. The GARCH(1,1) models for 

crude oil, heating oil, and propane produce infinite unconditional variances so that the 

EGARCH(1,1) model is selected instead. 

 Thus, I have concluded that the best model for electricity and unleaded gas is a 

GARCH(1,1) and for crude oil, heating oil, natural gas, and propane is an EGARCH(1,1). 

 It would be interesting at this point to see whether the inclusion of the conditional 

variance in the mean equation has any effect on the mean of the series. Thus, I estimate the 

corresponding GARCH(p*,q*)-M model for electricity and unleaded gas, and an 

EGARCH(1,1)-M model is estimated for the rest of the series. In the second column of 

Table 3.12, I present the type of model that is estimated for each of the series, the third 

column presents the number of AR lags that are included in the mean equation, while in 

columns three to five I report the estimated coefficient of the conditional variance, b, the 

corresponding t-statistic, and the probability respectively. The coefficient of the 

conditional variance, b, is not statistically significant for five out of the six series at the 

conventional 5% significance level, so I conclude that the inclusion of the conditional 

variance in the mean equation does not improve the fit of the model for these five series. 

However, the coefficient b, for the case of propane appears to be statistically significant at 

the 5% level, with a t-statistic of –2.266648 and a probability of 0.0235. Thus, the 

EGARCH(1,1)-M model for propane is selected over the EGARCH(1,1). 
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 Summarizing model selection, I have selected  a GARCH(1,1) model for electricity 

and unleaded gas, an EGARCH(1,1) for crude oil, heating oil, and natural gas, and an 

EGARCH(1,1)-M for propane. In Table 3.13, I present the estimated coefficients for the 

conditional variances of these models and in Figures 3.7 to 3.12, I graph the conditional 

variances. For electricity and unleaded gas that are estimated using a GARCH(1,1) model, 

all coefficients of the conditional variance appear to be statistically significant. For the 

series that an EGARCH(1,1) model was selected, crude oil, heating oil and natural gas,  all 

coefficients are statistically different than zero except for the parameter   that is 

insignificant for all three series. The same is true for propane which is estimated using an 

EGARCH(1,1)-M model. All parameters are highly significant except for the last 

coefficient,  , which again appears insignificant. Since the fourth term in the EGARCH 

and EGARCH-M models is designed to capture the effects of the sign of the lagged 

residuals to the asset’s variance, and the coefficient of this term,  , appears insignificant, 

this means that the variance of the changes in the assets’ prices does not depend on the sign 

of the residuals. Thus, there is no leverage effect. 

The estimated s or the lagged conditional variances in the conditional variance 

equation for all six series although different than one as tested earlier, are very close to one. 

This means that the conditional variance will exhibit high persistence and the effects of the 

shocks will fade away very slowly.  

The Box-Pierce Q(36) and Q2(36) statistics show that we fail to reject the null 

hypotheses that there are no linear or non-linear processes in the residuals that we haven’t 

accounted for. Only the Q2(36) statistic for natural gas is statistically significant, implying 
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that there are still some non-linear processes in the errors that the best fitted model, an 

EGARCH(1,1), cannot pick-up. 

3.5 FORECASTING 

 In the previous section I selected the best model for each of the six energy series. 

In this section I will use these models to produce in sample forecasts and compare the 

forecasted values with the actual realized futures prices. To do this I will exclude the last 

22 observations from the estimation, since the data I use are daily futures closing prices, 

and the 22 observations represent approximately one month’s trading days. Then I use the 

remaining observations to re-estimate the best fitted model for each series and use these 

models to generate in-sample forecasts for the last 22 observations. The exclusion of the 

last 22 observations leaves me with 3701 observations for crude oil, 434 for electricity, 

4410 for heating oil, 1942 for natural gas, 2600 for propane and 3278 for unleaded gas. 

In Figures 3.13-3.18 I present the graphs of the forecasts. The solid line represents 

the realized value, the thick dashed line represents the forecasted values, and the other two 

dashed lines represent the 2  standard deviations confidence bands for the forecasts. 

These standard deviations are estimated from the forecasted conditional variances. In Table 

3.14 I present some statistics for the forecasts’ evaluation. These statistics are: the root 

mean squared error (RMSE), 
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where 
ttttt yye ,11,1   , and 1ty  is the actual value of variable y at period t+1 and 

tty ,1
 

is the forecast for 1ty  at period t. The mean absolute error (MAE) is defined as: 
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and the mean absolute percent error is: 
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where 
1,11,1 /)(   tttttt yyyp . Finally Theil’s inequality coefficient is defined as: 
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 As we can see from Figures 3.13-3.18, the actual value of the closing price for the 

six futures contracts falls within the 2 conditional standard deviations band of the forecast 

for all forecasted values except for observation 3710 for crude oil and observation 4419 for 

heating oil where in both cases the realized closing price was below the predicted 
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confidence band. Thus, the model appears to be able to predict well in the short forecasting 

horizon of 22 periods in the future or approximately one month. 

 The most important result from modeling and estimating the conditional 

heteroscedasticity for forecasting is that conditional forecasts are far more superior than 

unconditional forecasts. This is because the forecast error using the conditional forecasts 

is smaller than the error from unconditional forecasts. To see this improvement in the 

forecasts in Table 3.15 I present the unconditional forecast standard deviations for the six 

series in columns 3 and 7, and in columns 4 and 8 the conditional standard deviation for 

one to five days ahead forecasts. In these one week ahead forecasts the unconditional 

standard deviation is always greater than the conditional one  and we can verify the 

theoretical superiority of the conditional forecasts. Thus, using the conditional 

heteroscedasticity to model the error sequence we are able to construct narrower 

forecasting confidence bands. Using such models, an investor optimizing his portfolio can 

use a more precise measure of risk for the corresponding assets.  

3.6  CONCLUSIONS 

 In this paper I tried to model the time series behavior of six energy market variables, 

the closing futures prices for crude oil, electricity, heating oil, natural gas, propane, and 

unleaded gas. Testing these series with two different unit root tests-the ADF and the 

Phillips-Peron-I showed that all six series have a stochastic trend. The non-stationarity of 

the series in their logarithmic forms suggested the use of their first differences as the 

appropriate variables for the rest of the analysis. I modeled the data as an AR(p) process 

where the order of the autoregression, p, was selected in such a way as to remove serial 



 87 

correlation. Having accounted for any linear dependencies in the data I proceeded to test 

for non-linear processes in the errors. The clustering of volatility episodes that was 

observed in the data implied a non-constant conditional variance and the existence of a 

time-varying heteroskedasticity. The application of more formal tests to the residuals 

confirmed the existence of ARCH processes in the errors. Different models of conditional 

heteroskedasticity that have been proposed recently in the literature were applied and tested 

and I selected for each series the model that provided the best fit. These best fitted models 

were then used to produce in-sample forecasts for one month ahead. Confidence bands 

were also constructed based on the forecasted conditional variance of the series. The actual 

values of the six energy market futures series were within the predicted +/-2 standard 

deviations bands for all forecasted values but two. Finally, using the conditional 

heteroscedasticity we saw that we can provide forecasts with smaller forecast errors than 

with the usual unconditional forecasts, verifying the theoretical superiority of such 

forecasts. 
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TABLE 3.1 

 SUMMARY STATISTICS FOR DAILY ENERGY PRICES (FIRST DIFFEREMCES IN LOGS)  

         

         

         

Variable 

Sample 

Size Mean 

Standard. 

Dev. Min Max Skewness Kurtosis J-B Prob.* 

         

Crude Oil 3722 -0,000163 0,019 -0,384071 0,123525 -2,106 47,409 0,000 

Electricity 455 0,000955 0,043 -0,297022 0,267433 -1,105 18,680 0,000 

Heating Oil 4431 -0,000133 0,019 -0,350938 0,128019 -1,907 36,303 0,000 

Natural Gas 1962 0,000129 0,028 -0,230920 0,209216 -0,121 13,864 0,000 

Propane 2621 0,000003 0,021 -0,378558 0,113597 -3,334 57,593 0,000 

Unleaded 

Gas 3299 -0,000116 0,019 -0,298099 0,147865 -1,060 23,400 0,000 

                  

* The null hypothesis is that the series is normally distributed.      
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TABLE 3.2 

          

           UNIT ROOT TEST RESULTS IN THE ENERGY VARIABLES   

          

          Panel A. Tests on the log levels    

          

           Augmented Dickey-Fuller Tests                    Phillips-Peron Tests  

Variable Sample Size ADF Statistic Aug. Lags 5% Crit. Value   PP Statistic Tranc. Lags 5% Crit. Value Decision 

          

Crude Oil 3723 -2,95 16 -3,41  -2,77 8 -3,41 I(1) 

Electricity 456 -1,87 8 -3,42  -2,04 5 -3,42 I(1) 

Heating Oil 4432 -3,15 16 -3,41  -2,85 9 -3,41 I(1) 

Natural Gas 1963 -3,65 13 -3,42  -3,20 7 -3,42 I(1) 

Propane 2622 -4,04 14 -3,42  -3,17 8 -3,41 I(1) 

Unleaded Gas 3300 -3,44 15 -3,41   -3,36 8 -3,41 I(1) 

          

          Panel B. First differeneces of log levels    

          

           Augmented Dickey-Fuller Tests                    Phillips-Peron Tests  

Variable Sample Size ADF Statistic Aug. Lags 5% Crit. Value   PP Statistic Tranc. Lags 5% Crit. Value Decision 

          

Crude Oil 3723 -13,68 16 -3,41  -59,16 8 -3,41 I(0) 

Electric Power 456 -7,69 8 -3,42  -20,78 5 -3,42 I(0) 

Heating Oil 4432 -14,91 16 -3,41  -63,83 9 -3,41 I(0) 

Natural Gas 1963 -10,18 13 -3,42  -42,02 7 -3,42 I(0) 

Propane 2622 -11,19 14 -3,41  -42,58 8 -3,41 I(0) 

Unleaded Gas 3300 -13,92 15 -3,41   -53,57 8 -3,41 I(0) 
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TABLE 3.3 

           

   SELECTION OF THE APPROPRIATE AR LAG STRUCTURE  

           

           

           

 AIC lag Value of SIC lag Value of LR Test  F-Test  Optimal AR Box-Pierce 

Variable Selection min AIC Selection min SIC Statistic Prob. Statistic Prob. lag structure Q(36) statistic 

           

Crude Oil 10 -7,890061 10 -7,87163 5.731* 0,333 1.142* 0,336 10 0,056 

Electricity 4 -6,296094 4 -6,25051 7.942* 0,242 1.303* 0,255 4 0,270 

Heating Oil 14 -7,993264 11 -7,97584 9,273 0,026 3,084 0,026 14 0,751 

Natural Gas 23 -7,158198 14 -7,11074 35,700 0,000 3,954 0,000 23 1,000 

Propane 13 -7,788038 11 -7,75791 12,688 0,002 6,286 0,002 13 0,883 

Unleaded 

Gas 10 -7,905428 10 -7,88503 2.385* 0,794 0.475* 0,795 10 0,256 

                      

* These tests involve overfitting the model selected by AIC and SIC and test the null hypothesis that the additional lags do not improve the fit.  
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TABLE 3.4 

         

 LAGRANGE MULTIPLIER TESTS FOR THE EXISTENCE OF ARCH ERRORS  

   
 

   

      

      

         

Variable Lags q TR2 Probability   Variable Lags q TR2 Probability 

         

Crude Oil 1 29,551 0,000  Natural Gas 1 10,008 0,002 

 2 40,503 0,000   2 19,022 0,000 

 5 103,492 0,000   5 22,237 0,001 

 10 129,781 0,000   10 42,579 0,000 

         

Electricity 1 1,864 0.173*  Propane 1 15,667 0,000 

 2 2,038 0.361*   2 38,919 0,000 

 5 21,376 0,001   5 67,156 0,000 

 10 22,919 0,011   10 106,194 0,000 

         

Heating Oil 1 16,980 0,000  Unleaded Gas 1 30,001 0,000 

 2 36,713 0,000   2 55,447 0,000 

 5 152,802 0,000   5 114,478 0,000 

 10 195,868 0,000   10 149,314 0,000 

                  

* Not significant at the 5% level.       
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TABLE 3.5 

         

    LR TESTS ON ARCH MODELS   

  

 

 
 

  

 

   

         

         

         

                    Likelihhod Ratio Test Statistic*     

         

ARCH Lags (q) Crude Oil Electricity Heating Oil  Natural Gas  Propane Unleaded Gas 

         

1  - - -  - - - 

2  272,47 N/A 188,66  62,35 244,69 91,06 

3  307,98 40,17 174,60  7,68 205,33 71,53 

4  154,78 N/A 119,90  0,12 65,30 4,10 

5  94,76 3,44 55,94  6,61 68,63 61,80 

6  37,82 2,98 18,90  19,83 96,10 17,66 

7  56,02 1,79 32,18  2,00 17,27 4,43 

8  27,30 N/A 25,60  4,51 33,68 4,62 

9  1,12 11,88 53,26  3,54 10,22 0,56 

                 

* The critical value at the 1% level with 1 degree of freedom is 6.63. N/A the statistic is not available because it was not possible to achieve convergence 
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TABLE 3.6 

        

         ARCH MODEL SELECTION   

        

        

        

Criterion   Crude Oil Electricity Heating Oil Natural Gas  Propane Unleaded Gas 

        

LR Test  8 3 >9 6 >9 6 

        

AIC  2 1 2 8 3 1 

        

SIC  1 1 1 2 3 1 
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TABLE 3.7 

  SELECTION OF A GARCH(p,q) MODEL  
 

 
 

     

      

      

    CRUDE OIL     

    AIC SIC Adj. R2 Log L 

GARCH(1,1)  -7.881789* -7.858332* 0.00533* 10365,72 

GARCH(1,2)  -7,881187 -7,856055 0,004998 10366,25 

GARCH(2,1)  -7,880899 -7,855767 0,004712 10365,20 

GARCH(2,2)  -7,880193 -7,853386 0,004276 10365,33 

      

    ELECTRICITY     

    AIC SIC Adj. R2 Log L 

GARCH(1,1)  -6.279071* -6.20614* 0.01821* 813,24 

GARCH(1,2)  -6,266912 -6,184865 0,008359 817,43 

GARCH(2,1)  -6,274653 -6,192606 0,016006 811,35 

GARCH(2,2)  -6,270259 -6,179096 0,013814 813,55 

      

    HEATING OIL     

    AIC SIC Adj. R2 Log L 

GARCH(1,1)  -7.983569* -7.957515* 0.011502* 12170,69 

GARCH(1,2)  -7,982676 -7,955176 0,010842 12172,38 

GARCH(2,1)  -7,983272 -7,955771 0,011432 12168,38 

GARCH(2,2)  -7,981434 -7,952486 0,009836 12170,22 
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TABLE 3.7 (CONTINUED) 

      

  SELECTION OF A GARCH(p,q) MODEL  

      

      

    NATURAL GAS     

    AIC SIC Adj. R2 Log L 

GARCH(1,1)  -7,120578 -7,043018 -0,016461 4315,93 

GARCH(1,2)  -7,136701 -7,056269 0,000305 4350,53 

GARCH(2,1)  -7.139357* -7.058925* 0.002957* 4347,11 

GARCH(2,2)  -7,125997 -7,042692 -0,00994 4346,70 

      

    PROPANE     

    AIC SIC Adj. R2 Log L 

GARCH(1,1)  -7.748555* -7.710316* 0.038354* 7458,71 

GARCH(1,2)  -7,747228 -7,70674 0,037444 7459,76 

GARCH(2,1)  -7,745172 -7,704683 0,035462 7459,82 

GARCH(2,2)  -7,744157 -7,701419 0,03485 7460,08 

      

    UNLEADED GAS   

    AIC SIC Adj. R2 Log L 

GARCH(1,1)  -7.899914* -7.873955* 0.009027* 8719,59 

GARCH(1,2)  -7,899014 -7,871202 0,008435 8720,41 

GARCH(2,1)  -7,899218 -7,871405 0,008637 8718,38 

GARCH(2,2)  -7,898503 -7,868836 0,008228 8716,06 

            

* These values select the corresponding GARCH model.   
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TABLE 3.8 

       

   EGARCH(1,1) ESTIMATION RESULTS  

       

 

 
 

      

       

       

       

       

       

Variable AR Lags   AIC SIC Adj. R2 Log L 

       

Crude Oil 10  -7,881207 -7,856075 0,005018 10379,48 

Electricity 4  -6,256332 -6,174285 -0,002188 829,12 

Heating Oil 14  -7,983285 -7,955784 0,011444 12178,42 

Natural Gas 23  -7,141221 -7,060788 0,004813 4376,44 

Propane 13  -7,742823 -7,702334 0,033194 7467,93 

Unleaded Gas 10  -7,898934 -7,871122 0,008356 8729,82 
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TABLE 3.9 

           

   SELECTION BETWEEN ARCH AND GARCH MODELS   

           

           

           

   

  

ARCH(q*) Model Statistics 

   

  

GARCH(p*,q*) Model Statistics 

  Selected 

Variable AR Lags   AIC SIC Log L   AIC SIC Log L Model 

           

Crude Oil 10  -7,876614 -7,843105 10302,86  -7,881789 -7,858332 10365,72 GARCH(1,1) 

Electricity 4  -6,269491 -6,187444 814,19  -6,279071 -6,206140 813,24 GARCH(1,1) 

Heating Oil 14  -7,980340 -7,944155 12094,92  -7,983569 -7,957515 12170,69 GARCH(1,1) 

Natural Gas 23  -7,119062 -7,030012 4326,14  -7,139357 -7,058925 4347,11 GARCH(2,1) 

Propane 13  -7,729930 -7,675946 7449,92  -7,748555 -7,710316 7458,71 GARCH(1,1) 

Unleaded Gas 10  -7,895255 -7,861880 8693,41  -7,899914 -7,873955 8719,59 GARCH(1,1) 
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TABLE 3.10 

         

 DIAGNOSTICS FOR THE STANDARDIZED RESIDUALS  

         

         

           Crude Oil             Electricity           Heating Oil 

  GARCH EGARCH   GARCH EGARCH   GARCH EGARCH 

Mean -0,0094 -0,0038  -0,0234 0,0460  -0,0114 -0,0143 

Maximum 5,0233 4,6039  5,5839 7,5145  6,0003 5,7813 

Mimimum -7,2476 -8,4565  -7,4431 -5,1797  -6,4480 -7,3329 

St.Deviation 0,9998 0,9999  1,0623 1,0059  0,9999 1,0000 

Skewness -0,2267 -0,2531  -1,0274 0,2462  -0,2241 -0,2577 

Kurtosis 5,1469 5,6720  14,7192 16,5143  5,2640 5,5161 

         

J-B 744,657 1143,902  2660,179 3436,584  980,303 1214,010 

Prob. 0,000 0,000  0,000 0,000  0,000 0,000 

         

Observations 3712 3712  451 451  4417 4417 

         

         

          Natural Gas             Propane          Unleaded Gas 

 GARCH EGARCH   GARCH EGARCH   GARCH EGARCH 

Mean -0,0296 -0,0141  -0,0016 -0,0194  0,0041 0,0020 

Maximum 8,0347 7,9754  4,1877 3,9657  7,6249 7,3023 

Mimimum -9,5053 -7,9805  -9,0128 -8,1872  -6,3123 -7,0083 

St.Deviation 0,9994 0,9996  1,0001 1,0006  1,0000 0,9997 

Skewness 0,1165 0,4144  -0,6607 -0,6502  -0,2137 -0,2797 

Kurtosis 14,1987 13,3137  8,1516 7,6465  6,0113 6,1758 

         

J-B 10136,530 8649,484  3073,656 2529,885  1267,761 1425,062 

Prob. 0,000 0,000  0,000 0,000  0,000 0,000 

         

Observations 1939 1939  2608 2608  3289 3289 
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TABLE 3.11 

   GARCH AND EGARCH COEFFICIENTS TESTS    

          

                  Panel A. GARCH(p*,q*) Model    

          

               Coefficients for the Conditional Variance              Test (prob.) 

Variable AR Lags (p*,q*) 0 1 1 2   

          

Crude Oil 10 (1,1) 0,000 0,093 0,911 -  0,350 - 

Electricity 4 (1,1) 0,000 -0,014 1,001 -  0.015* - 

Heating Oil 14 (1,1) 0,000 0,082 0,915 -  0,364 - 

Natural Gas 23 (2,1) 0,000 0,176 0,053 0,777  - 0,707 

Propane 13 (1,1) 0,000 0,155 0,851 -  0,694 - 

Unleaded Gas 10 (1,1) 0,000 0,069 0,917 -  0.041* - 

                    

          

                  Panel B. EGARCH(1,1) Model     

          

               Coefficients for the Conditional Variance  Test (prob.)  

Variable AR Lags   w0      

          

Crude Oil 10  -0,184 0,993 0,162 -0,016  0.013*  

Electric Power 4  -0,123 0,981 -0,004 0,142  0,422  

Heating Oil 14  -0,253 0,986 0,178 0,004  0.001*  

Natural Gas 23  -0,406 0,967 0,232 -0,025  0.010*  

Propane 13  -0,338 0,983 0,271 0,045  0.024*  

Unleaded Gas 10  -0,245 0,984 0,147 -0,003  0.002*  

* Statistically significant at the 5% level.      
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TABLE 3.12 

 TESTING GARCH-M AND EGARCH-M MODELS  

      

   

  

  

 Estimated AR Lags Coefficient   

Variable Model k b t-statistic Probability 

      

Crude Oil EGARCH-M 10 -0,098486 -0,096007 0,9235 

Electricity * GARCH-M 4 -0,305768 -0,877635 0,3806 

Heating Oil EGARCH-M 14 -2,333717 -1,740436 0,0819 

Natural Gas EGARCH-M 23 0,268995 0,244248 0,8071 

Propane EGARCH-M 13 -2,920799 -2,266648 0,0235 

Unleaded Gas GARCH-M 10 1,615091 0,901249 0,3675 

            

* Instead of the conditional variance the conditional standard deviation is used here.  
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TABLE 3.13 

           

    ESTIMATION RESULTS      

           

    Panel A. GARCH(1,1) Models      

           

  Coefficients for the Conditional Variance             

Variable AR(p) 0 1 1  Log L AIC SIC Q(36) Q2(36) 

Electricity 4 0.000 (2.67) -0.014 (1.47) 1.001 (156.04)  813,2434 -6,279071 -6,20614 0,341 0,513 

Unleaded Gas 10 0.000 (3.27) 0.069 (4.26) 0.917 (57.14)  8719,588 -7,899914 -7,873955 0,372 0,604 

                      

           

    Panel B. EGARCH(1,1) Models     

           

  Coefficients for the Conditional Variance             

Variable AR(p) w0    Log L AIC SIC Q(36) Q2(36) 

Crude Oil 10 -0.184 (7.42) 0.993 (332.38) 0.162 (7.47) -0.016 (1.10) 10379,48 -7,881207 -7,856075 0,213 0,450 

Heating Oil 14 -0.253 (5.37) 0.986 (229.18) 0.178 (5.44) 0.004 (0.20) 12178,42 -7,983285 -7,955784 0,822 0,081 

Natural Gas 23 -0.406 (3.18) 0.967 (75.25) 0.232 (3.98) -0.025 (0.65) 4376,442 -7,141221 -7,060788 0,333 0,000 

                      

           

    Panel C. EGARCH(1,1)-M Model     

           

  Coefficients for the Conditional Variance             

Variable AR(p) w0    Log L AIC SIC Q(36) Q2(36) 

           

Propane 13 -0.346 (5.52) 0.982 (146.37) 0.272 (9.53) 0.040 (1.68) 7462,029 -7,745033 -7,702295 0,821 0,950 
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TABLE 3.14 

         

  FORECAST EVALUATION STATISTICS   

         

         

         

  Model Used for Forecasted     Theil's 

Variable   the Forecast Observations   RMSE MAE MAPE Inequality Coef. 

         

Crude Oil  EGARCH(1,1) 3702-3723  0,012 0,009 87,696 0,962 

Electricity  GARCH(1,1) 435-456  0,022 0,020 125,203 0,900 

Heating Oil  EGARCH(1,1) 4411-4432  0,013 0,010 101,458 0,978 

Natural Gas  EGARCH(1,1) 1942-1963  0,025 0,021 100,872 0,765 

Propane  EGARCH(1,1)-M 2601-2622  0,018 0,013 90,956 0,934 

Unleaded Gas  GARCH(1,1) 3279-3300  0,012 0,010 96,679 0,948 
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TABLE 3.15 

         

UNCONDITIONAL AND CONDITIONAL STANDARD DEVIATIONS IN WEEK AHEAD FORECASTS 

         

 Forecast Forecast 

 

 
 

   Forecast 

 

 
 

Variable Day 
 

    Variable Lags q 
 

  

         

Crude Oil 1 0,014189 0,014174  Natural Gas 1 0,032508 0,032078 

 2 0,014256 0,014235   2 0,032647 0,032226 

 3 0,014319 0,014295   3 0,033149 0,032370 

 4 0,014382 0,014356   4 0,032854 0,032510 

 5 0,014448 0,014416   5 0,033086 0,032646 

         

Electricity 1 0,048451 0,048416  Propane 1 0,020552 0,020514 

 2 0,048473 0,048414   2 0,020779 0,020565 

 3 0,048463 0,048412   3 0,020836 0,020615 

 4 0,048612 0,048410   4 0,020912 0,020665 

 5 0,049110 0,048408   5 0,020952 0,020713 

         

Heating Oil 1 0,012351 0,012335  Unleaded Gas 1 0,015196 0,015162 

 2 0,012444 0,012423   2 0,015299 0,015235 

 3 0,012531 0,012510   3 0,015367 0,015307 

 4 0,012629 0,012596   4 0,015443 0,015377 

 5 0,012716 0,012682   5 0,015509 0,015446 
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Figure 3.1. Logged Prices for Crude Oil 
 

 

Figure 3.2. Logged Prices for Electricity 
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Figure 3.3. Logged Prices for Heating Oil 

 

Figure 3.4. Logged Prices for Natural Gas 
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Figure 3.5. Logged Prices for Propane 

 

 

Figure 3.6. Logged Prices for Unleaded Gas 
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   Figure 3.7. Conditional Variance for Crude Oil    Figure 3.8. Conditional Variance for Electricity 
 

 
 

    

 

     

     

     

     

     

     

     

     

     

     

     

     

     

          

          

   Figure 3.9. Conditional Variance for Heating Oil    Figure 3.10. Conditional Variance for Natural Gas 
 

 
 

         

       
 

  

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

   Figure 3.11. Conditional Variance for Propane    Figure 3.12. Conditional Variance for Unleaded Gas 
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Figure 3.13. In-Sample Forecasts and 95% Confidence Intervals  for Crude Oil. 

      

 

 
 

      

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

Figure 3.14. In-Sample Forecasts and 95% Confidence Intervals for Electricity. 

      

 

 
 

      

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

Figure 3.15. In-Sample Forecasts and 95% Confidence Intervals for Heating Oil. 
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Figure 3.16. In-Sample Forecasts and 95% Confidence Intervals for Natural Gas. 

       

 

 
 

      

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

Figure 3.17. In-Sample Forecasts and 95% Confidence Intervals for Propane 
 

 
 

      

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

Figure 3.18. In-Sample Forecasts and 95% Confidence Intervals for Unleaded Gas. 
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4.1 INTRODUCTION 

 In development economics, the balanced growth theory suggests that in the steady state per 

capita consumption, investment and output all grow at the same rate so that the consumption – 

output and the investment – output ratios are constant. These two ratios are also known as the great 

ratios. Thus, according to the theory, consumption, investment and output must be non-stationary 

and for the great ratios to be constant, they must be cointegrated. 

 In their (1988) paper, King et al. have used a simple real business cycle model proposed by 

Fynn Kydland and Edward Prescott (1982) to test the balanced growth theory where total factor 

productivity evolves according to a random walk with drift procedure. Following King et al. (1988), 

in this paper we use recent developments in econometrics to test the balanced growth theory and at 

the same time the existence of a stable money demand function. The data that are used are quarterly 

U.S. observations from 1960:1 to 1997:4 for real per capita personal consumption expenditures, 

real per capita private fixed investment, real per capita private GNP, 3-month treasury bill interest 

rates and per capita real money balances. To examine the sensitivity of the results to different 

money measures and overcome William Barnett's (…………..) critique on the appropriate money 

measures I use in this paper twelve different money measures: the commonly used simple-sum  

M1, M2, M3 and L measures and also Divisia M1, M2, M3, and L, and currency-equivalence M1, 

M2, M3 and L.  

 The recent Johansen and Juselius (1992) multivariate maximum likelihood cointegration 

tests are applied to three different systems, the first including only the real variables, the second 

includes the nominal variables and the third all five variables. For the systems that there is evidence 

of the existence of cointegrated vectors according to what the theory predicts I estimate those 

vectors and impose additional assumptions. Finally, I simulate shocks to the whole system and to 

specific variables of interest and get the impulse responses of the estimated cointegrating vectors 

and of individual variables. 
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 The structure of this paper is as follows: in Section 4.2, I discuss the theoretical background 

and show how the theory will be tested, in Section 4.3, I present the data that are used and the 

methods for testing for stochastic trends in the data. Section 4.4 deals with the econometric 

framework of the Johansen and Juselius (1992) maximum likelihood cointegration test and it's 

application to the three systems. In Section 4.5, the cointegrating relations that are identified in the 

previous section are shocked in order to see how the cointegrated vectors and individual variables 

respond to various stochastic shocks to the system's variables. Finally, Section 4.6, summarizes the 

conclusions. 

4.2 THEORETICAL BACKGROUND 

 The model that underlies the analysis in this paper is a simple real business cycle model 

where we have permanent productivity shocks. It is of the general class of models described by 

Fynn Kydland and Edward Prescott (1982) and King et al. (1988). The economy’s production 

function is described by a constant returns to scale Cobb-Douglas production function of the form: 

 

 tttt NKY 1  (4.2.1) 

 

where tY  is the output at period t, tK  is the capital stock and tN  represents labor. In this model 

it is assumed that total factor productivity t  follows a logarithmic random walk of the form: 

 

ttt   )log()log( 1   (4.2.2) 
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where the innovations represented by the sequence }{ t are assumed independently and identically 

distributed with a mean of 0 and a variance 
2 . The interpretation of the evolution of productivity 

according to (4.2.2) is that the productivity grows at every period by an average rate of   and the 

}{ t  sequence represents shocks or deviations of productivity from this average. Thus, the first 

two terms on the right-hand-side of (4.2.2) represent the deterministic part of the productivity 

evolution and the last term represents the stochastic innovations. 

 In a standard neoclassical model as that by Solow (1970), where we only have deterministic 

trends, we find that in the steady state, per capita consumption, investment and output all grow at 

a constant rate of  / .   This common deterministic trend implies that the great ratios, the ratio 

of consumption over output and investment over output are constant in every period in the steady 

state. But when we add the stochastic term in the evolution of productivity, the realizations of t  

will permanently affect the evolution of productivity at all future periods: 

 

tsttstt EE   )()log( 1 .  (4.2.3) 

 

 In this setting, a positive productivity shock at period t raises the expected long-run growth path, 

introducing a common stochastic trend in the logarithms of consumption, investment and output. 

The stochastic trend is  /)log( t  and its growth rate is  /)( t  which is the analog of the 

deterministic model’s common growth rate  / . Because all three variables here, consumption, 

investment and output have a common stochastic trend the great ratios tt YC /  and tt YI /  must be 

stationary stochastic processes. 
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 These theoretical results can be tested in a cointegration framework where 
tX  is a vector 

of the logarithms of consumption, investment and output at period t, denoted by tc , ti  and ty . All 

three variables are non-stationary and integrated of order 1, or I(1), because productivity as we 

have seen follows a random walk. The balanced growth hypothesis in this case implies that the 

difference between any two of the components of tX  will be a stationary variable or I(0) according 

to the Engle and Granger (1987) terminology. The two cointegrating vectors will be  =[1,0,-1] 

and  =[0,1,-1].  

 In this model, the dynamic adjustments that the economy has to make after a productivity 

shock t  and the speed of adjustment will depend on the specific characteristics and parameters of 

this economy regarding tastes, preferences and technology. The real business cycle theory has 

studied the changes that happen to the economy in terms of a) the investment technology, with 

respect to the issues of adjustment costs, inventory changes and time-to-build, b) the production 

technology, with respect to variable capacity utilization, indivisibilities of labor and employment 

adjustment costs c) the issue of preferences, the non-separability of leisure and durable goods and 

d) the issue of serial correlation in the productivity growth. From this research two important 

properties emerge. First, the fact that there exist transitory dynamics as the economy adjusts 

consumption, investment and work effort in the process of moving towards a new steady state. In 

this period of adjustment the great ratios are expected to change temporarily. Second, there exists 

a common stochastic trend in consumption, investment and output due to the stochastic trend in 

productivity. These two issues can be examined in terms of cointegration tests between 

consumption, investment and output and in the case that there is empirical evidence that 

cointegration does exist, the short-run adjustment dynamics can be studied using vector error 

correction models (VECM). In other systems where tX  is augmented to include both the real 

variables, consumption, investment and output and nominal variables such as money balances, the 
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price level and the nominal interest rate, now 
tX = ],,,,[ tttttt Rypmic   and if tt pm  , and tR  are 

I(1) then according to the theory I would expect to find three cointegrating vectors, the two great 

ratios:  =[1,0,0,-1,0],  =[0,1,0,-1,0] and the money demand relation  =[0,0,1,- 4 , 4 ]. In this 

case tt pm   represents the logarithm of real money balances and tR  is the nominal interest rate. 

According to the theory I expect 4 = -1 and 4  to be small and positive. These coefficients in the 

cointegrating vector for the money demand imply a one-to-one positive relation between real 

money balances and output and a small negative relation between real money balances and the 

nominal interest rate. 

 In this paper I will use the latest developments in the field of non-stationary variables and 

cointegration to test whether the data support the above cointegrating relations predicted by theory 

and if there is evidence for cointegration I will test whether the coefficients in the cointegrating 

relations are of the expected magnitude. 

4.3 THE DATA AND TESTS FOR STOCHASTIC TRENDS 

 The data that are used in this paper are quarterly U.S. observations from 1960:1 to 1997:4. 

The variables are: real per capita personal consumption expenditures seasonally adjusted, c, real 

per capita private fixed investment seasonally adjusted, i, real per capita private GNP seasonally 

adjusted, y, defined as total GNP minus government expenditures. The real money balances 

variable is defined as per capita real money balances. The twelve different measures of money that 

are used in this paper are the Simple-Sum M1, M2, M3 and L denoted as S1 S2, S3 and SL 

respectively, the Divisia M1, M2, M3 and L denoted as D1 D2, D3 and DL and Currency 

Equivalence M1, M2, M3 and L measures denoted by C1, C2, C3, and CL. The interest rates that 

I use are 3-month treasury bill auction averages when a simple-sum or a currency-equivalence 

monetary aggregate is used. In the systems that involve the Divisia M1, Divisia M2, Divisia M3 
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and Divisia L monetary aggregates I use the more appropriate “user costs” of money, denoted by 

UC1, UC2, UC3, and UCL.  

 All variables are in logarithms with the exception of the nominal interest rates and the user 

costs of money. The real variables are produced using the GNP deflator as a price index. 

4.3.1 Testing for Stochastic Trends in the Data 

 

 To test the cointegration properties of the data I need the variables to be non-stationary or 

I(1) in the Engle and Granger (1988) terminology. In Figure 4.1, I graph the logarithms of 

consumption, investment and output. Clearly all three variables show characteristic upward trends 

and cyclical effects. In Figures 4.2-4.5, I graph per capita real money balances from the narrowest 

definitions of the three monetary aggregates, Simple Sum, Divisia and Currency equivalence M1, 

to the broadest measures, L. Finally in Figure 4.6, I graph the great ratios c-y and i-y.  

 In order to test for cointegration we need consumption, investment, output, the twelve 

different measures of money and the interest rates and user costs to be non-stationary processes of 

the same order of integration. Also, according to the theory of balanced growth, we would expect 

that if consumption, investment and output have common stochastic trends, the great ratios must 

be stationary. Thus, evidence of non-stationarity of the great ratios is evidence against balanced 

growth theory.   

For these reasons, it is important at this stage to examine the stationarity properties of the 

data and test for the presence of stochastic trends or unit roots. A stationary series has a constant 

mean and shocks to the series will not have permanent effects on the mean of the series. In this 

case the variable is mean reverting or stationary. Equivalently, a trend-stationary series follows a 

deterministic trend and any shocks to the variable will fade away and the variable will return to the 

original deterministic trend. In a series that has a stochastic trend or a unit root, a shock to the series 
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at period t will have permanent effects. Such a series will have a non-stationary variance which 

will tend to infinity as t .  

In testing for stochastic trends (unit roots) in the log levels of the original data, I use two 

alternative testing procedures as an attempt to deal with the fact that some of the series may not be 

very informative about the existence or not of a unit root. In columns 2 and 3, of Table 4.1, I present 

the results of augmented Dickey-Fuller (ADF) tests1 to the levels and first differences of the data 

respectively. In columns 4 and 5, I present the alternative non-parametric Phillips-Perron (PP) tests 

of Phillips and Perron (1988) for the existence of a unit root. The ADF tests are conducted using 

the following regression: 

 




 
m

i

tititt zztz
1

1210 logloglog ,  (4.3.1) 

 

where tz  is the series under consideration and m is selected large enough such that t  is white 

noise. The null hypothesis of a unit root is rejected if 2  is negative and significantly different 

than zero. The critical values are not the usual t-statistics but are those given by Fuller (1976). The 

problem with this testing procedure is that the order of the  autoregression is not known. One way 

to overcome this is to use some information criterion to select the best model. In this paper I use a 

lag order of m = 4 and the resulting Durbin-statistics show that any autocorrelation has been 

successfully removed. An alternative way to using the augmenting lags to correct for serial 

correlation is the Phillips-Peron testing procedure that uses non-parametric correction. The PP test 

involves estimating (4.3.1) with m = 0 and then the statistics are transformed to correct for serial 

                                                             
 

 

1 See Dickey and Fuller (1981). 
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correlation in their asymptotic distribution. For the transformation formula see Phillips and Peron 

(1988, Table 1, p. 308-9). The critical values for this test are the same as in the Dickey-Fuller tests. 

The Newey and West (1987) method is used to estimate the error variance from the estimated 

residuals as: 

 

 
 
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,  (4.3.2) 

 

where p is the truncation lag parameter which is set in the estimation according to the Newey and 

West suggested value, and ( , )s p
s

p






1

1
. 

 According to the ADF tests, in panel A of Table 4.1, I find evidence that the three real 

variables, the nominal interest rate, the user costs, S2, C1, C2, and C3 are all I(1), while the rest of 

the monetary aggregates appear to be I(2). The consumption-output ratio and  CL appear to be I(0) 

or stationary. The PP tests, in panel B of Table 4.1, show that all variables are I(1) with the 

exception of CL and the consumption-output great ratio which are I(0). Thus, in some cases the 

data are not very informative about their stationarity properties and in column 6 of Table 4.1 I 

report the decisions that are made regarding their order of integration. Whenever the ADF and the 

PP tests produce conflicting results, I treat the respective variables as I(1) for the purposes of this 

paper. Finally CL is found to be I(0) using both tests, so in the estimations where CL is included 

the results must be interpreted with caution.  

4.4 MAXIMUM LIKELIHOOD COINTEGRATION TESTS 

 In this section I will use the Johansen and Juselius (1992) maximum likelihood 

cointegration tests to test for cointegration in three different systems. The first is the c, i, y system 

where according to the theory I expect to find two cointegrating relations, namely the consumption-
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output and the investment-output great ratios. The second system that includes, m-p, y, and R, is 

estimated with each one of the twelve monetary aggregates. In this system I expect to identify one 

cointegrating vector that corresponds to the long-run money demand function. Finally in the third 

system I include all five variables, c, i, m-p, y and R expecting three common stochastic trends, the 

two great ratios and the money demand function. 

4.4.1 The Econometric Framework  

 I follow Johansen and Juselius (1992) and for a system of p variables, I consider the 

following p-dimensional vector autoregressive model: 

 




 
k

i

titit XX
1

  (4.4.1) 

 

where tX  is a vector of the variables that are included in the estimated system and t  is an 

independently and identically distributed p-dimensional vector of innovations with zero mean and 

covariance matrix  . If )( 1 kI    is the pp  total impact matrix I consider the 

hypothesis of the existence of a maximum of r<p cointegrating relations as 

 

':)(1 rH   (4.4.2) 
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where   and  are rp matrices of full rank. The   matrix is a matrix of cointegrating vectors 

such that tX'  is stationary even though tX  is itself non-stationary2. The   matrix is a matrix of 

error correction parameters. 

 The maximum likelihood estimation and the likelihood ratio test of this model has been 

investigated by Johansen (1988). According to Johansen and Juselius (1992) I transform equation 

(4.4.1) by subtracting 1tX  from both sides and collecting the terms on 1tX . Then I add and 

subtract 21 )1(  tX  and repeat this procedure and collect terms to get: 

 






 
1

1

),,1('
k

i

tktitit TtXXX    (4.4.3) 

 

where 

 

)1,,1(),( 1  kiIII ii  .  (4.4.4) 

 

 In equation (4.4.3) the matrix   is restricted as '  but the parameters vary 

independently. Thus, the parameters 11 ,,  k  can be eliminated by regressing tX  and ktX   on 

                                                             
 

 

2 See Engle and Granger (1987). 
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lagged differences 11 ,,   ktt XX  . These regressions produce the residuals otR  and ktR  and 

residual product moment matrices 

 

),,(
1

1 kojiRRTS
T

t

jtitij  



.  (4.4.5) 

 

 The estimate of   is calculated3 by solving the eigenvalue problem 

 

00

1

000  

kkkk SSSS  (4.4.6) 

 

for eigenvalues 0ˆˆ
1  p , eigenvectors )ˆ,,ˆ( 1 pvvV   normalized by IVSV kk ˆ'ˆ . The 

maximum likelihood estimators are given by 

 

)ˆ,,ˆ(ˆ
1 rvv  ,   ˆˆ

0kS  and  'ˆˆˆ  S .  (4.4.7) 

 

 The maximized likelihood function is calculated from 

 

                                                             
 

 

3 See Johansen (1988). 
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
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and the likelihood ratio test of the hypothesis )(1 rH  is given by the trace test statistic or trace : 

 

  



p

ri

iTHrHQ
1

01 )ˆ1ln(|)(ln2 .  (4.4.9) 

 

An alternative test which is called the maximum eigenvalue test or max  is based on comparing 

)1(1 rH  with )(1 rH : 

 

  )ˆ1ln()(|)(ln2 111  rTrHrHQ .  (4.4.10) 

 

The critical values for these tests are given by Osterwald and Lenum (1990). 

 To select the appropriate lag order for each model in the corresponding VAR, I estimate 

VAR(k) models with k from 1 to 20 and select the order of the VAR that minimizes the Akaike 

Information Criterion (AIC). Using this criterion I select 3 lags for the c, i, y system, for the m-p, 

y, R system 6 lags are selected using the simple sum and currency equivalence monetary 

aggregates, while in using the Divisia aggregates I select a VAR(4) for Divisia M1 and a VAR(3) 

for the broader Divisia aggregates. The selection of the order of the VAR is important because the 

cointegration tests are quite sensitive to the order of the VARs. 
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4.4.2 Testing the c, i, y  system 

 

 The first system that I am going to examine using the previously described Johansen 

methodology is the trivariate consumption, investment, and output system. I have already 

concluded in Section 4.3.1 that all three variables are non-stationary and I(1) so that we can use the 

cointegration analysis to test the theoretical proposition of balanced growth. According to the 

theory, the two great ratios, the consumption-output and investment-output ratios are expected to 

be stationary. Thus, if the theory is correct, I expect to find evidence of two cointegrating vectors. 

If the order of the variables in the system is tX = ],,[ ttt yic ’ then the two cointegrating vectors are 

expected to be: ]1,0,1[   and ]1,1,0[   for the consumption and investment great ratios 

respectively, so that although the three variables are non-stationary there exists a linear 

combination of them that is stationary. The estimated max  and trace  test statistics and the 

corresponding null hypotheses that are calculated using an order 3 VAR are shown in Table 4.2. 

None of the two statistics is statistically significant at the 5% level. Thus, there is no evidence of 

any cointegrating relations in this system although the theory predicts two. Having in mind the unit 

root tests on the two great ratios, I was expecting to find one cointegrating relation. We have seen 

that the c-y variable that corresponds to the consumption-output great ratio was found to be 

stationary implying a long run relationship between the two I(1) variables. The trivariate 

cointegration test does not provide evidence for any cointegrating relations between the three 

variables. 

4.4.3 The m-p, y, R System 

 The next system I am going to test is tX = ],,[ Rypm  . In this case I expect to find one 

cointegrating relationship according to theory, [1,
Ry  , ], which corresponds to the long-run money 

demand function. If such a cointegrating vector exists I expect 1 y
 and 0R  and small. 



 124 

This is because according to the theory output, y, must be positively related to the real money 

balances, m-p, and the relation must be one-to-one. Also, the interest rate elasticity, R , of real 

money balances must be negative and relatively small. 

 Here, for the real money balances variable, m-p, I use three different monetary aggregates: 

simple sum, Divisia, and currency equivalence. For all three aggregates I use four levels of 

aggregation, M1, M2, M3, and L, so that I test a total of 12 money measures. The variables are 

named such that S1 corresponds to the simple sum M1 measure, D1 refers to the Divisia M1 

measure, C1 is the currency equivalence M1 and so on. For the nominal interest rate variable, R, 

in the case of the Divisia aggregates, I use the user cost of money which is a more appropriate 

measure of the opportunity cost of holding money for these aggregates. The results of the Johansen 

maximum likelihood cointegration tests are shown in Table 4.2. According to the max  and trace  

statistics I find some evidence of cointegration at the 5% level, only when S1, S2, and D1 measures 

are used. In the other cases I accept the null hypothesis of no cointegration. Then, I impose some 

just-identifying restrictions for cointegration rank of r = 1 to identify the cointegrating vectors. In 

Table 4.3 I summarize the Johansen cointegration tests. The way these tests are constructed, a time 

trend is included in the cointegrating vectors. If the money demand function exists as predicted by 

the theory, there should be no trend in the cointegrating vectors. Thus, I test the null hypothesis 

that the time trend in each of the three cointegrating vectors is equal to zero, or that in the 

cointegrating vector [m-p,y,R,t], where t is the time trend, 04  .  As we can see from Table 4.3, 

the null hypothesis that the time trend in the three cointegrating vectors is equal to zero, cannot be 

rejected at the 5% level. So, I impose next the over-identifying restriction that 04   and the 

cointegrating vectors are identified as in Table 4.4. The coefficients of real money balances are 

normalized to 1. I observe that with the exception of the interest rate coefficient in the simple sum 

M2 cointegrating vector, all other coefficients have the correct signs. The coefficient on the interest 
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rate or the user cost is positive and small as it is predicted by the theory, but the coefficients for the 

output elasticity of real money balances appear to be different than –1. Testing the overidentifying 

restriction that 12  , in column 5 of Table 4.3, I reject the null hypothesis for all three 

cointegrating vectors. Thus, I conclude that the coefficients on output are significantly greater than 

–1 so that the elasticity of real money balances to output is less than 1. 

4.4.4 The c, i, m-p, y, R System 

 In this section I include all five variables in the same system so that now tX [c, i, m-p, 

y, R]. The cointegration tests are done using all twelve money measures. According to the theory I 

expect to find three cointegrating relations in this system, the two great ratios, and the money 

demand function. However, I have seen from the unit root tests that the investment-output great 

ratio, i-y, is nonstationary, so the one-to-one relation may not exist. Applying the Johansen 

methodology to test for cointegration in this system I get the results of Table 4.5. According to the  

max  and trace  test statistics, I cannot reject the null hypothesis of no cointegration or r = 0 for the 

cases of D2, D3, and C1. For all the other cases I find evidence of one cointegrating vector, with 

the exception of Divisia M1 where the max  test provides evidence of 3 cointegrating vectors, while 

the trace  test provides evidence for 2. According to Johansen (1991), this ambiguity is due to the 

low power in cases when the cointegration relation is quite close to the non-stationary boundary. 

However, since the trace  test takes into account all of the smallest eigenvalues it tends to have more 

power than the max  test. Thus, in the case of Divisia M1, I assume that there exist two 

cointegrating vectors. In column 3 of Table 4.6, I present the number of cointegrating vectors for 

each money measure. The next step is to identify the cointegrating vectors. Whenever r = 1 is 

selected, it is more likely that the one cointegrating vector is the long-run money demand function 

since from the trivariate c, i, y system I did not find any evidence of cointegration. Also, since we 

have seen that the c-y great ratio is stationary it is more likely that the consumption-output great 
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ratio may have been picked up by the Johansen cointegration test. Thus, for the cases where r = 1, 

I test the overidentifying restrictions that 0621   and 06532  , that 

identify the long-run money demand function and the consumption-output great ratio respectively 

as the cointegrating vector. From Table 4.6, columns 4 and 5 we can see that I accept both 

hypotheses in the case of S1, but I reject them both for all the other money measures.  The identified 

cointegrating vectors for S1 are shown in Table 4.7 in columns 2 and 3.  Thus, although I find some 

evidence of one cointegrating vector in the S1 case, the tests cannot conclude whether that vector 

is one of the two cointegrating relations that I expect (consumption-output ratio or the money 

demand function), I fail to reject both null hypotheses. 

 The rejection of both cointegrating regressions for the other money measures means that the one 

cointegrating vector that the Johansen test detects is not the money demand or consumption great 

ratio that the theory predicts. For the case of Divisia M1, where we have two cointegrating vectors, 

I impose and test the overidentifying restriction that 01
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consumption-output great ratio. This is distributed under the null as a 2  with 3 degrees of 

freedom. In column 6 of Table 4.6, we see that the null hypothesis cannot be rejected at the 5% 

level, and I find evidence that one cointegrating vector is the c-y ratio. In order to test jointly that 

the two identified cointegrating vectors are the c-y great ratio and the money demand function as 

predicted by the theory, I test the joint hypothesis that 02

6

2

2

1

6

1

5

1

2  . We can see in 

column 7 of Table 4.6 that the probability is 0.394 and I cannot reject the null hypothesis. The 

identified cointegrating vectors are shown in columns 4 and 5 of Table 4.7. The coefficient of y is 

expected to be equal to –1 in both cointegrating vectors. In the consumption-output cointegrating 

vector, in column 2 of Table 4.7, the coefficient of y is equal to –1.3860. The coefficient of y in 

the money demand cointegrating vector is equal to –0.4662. Although the coefficients are negative 

they do not seem to be jointly equal to –1 as I would expect in this system. The overidentifying 
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restriction that the coefficients on income are both –1, or testing that 12

4

1

4  , is strongly 

rejected and the probability is 0.000. The coefficient of the user cost of money UC1, is positive and 

small in size as expected, 2

5 = 0.0031. 

  

4.5 IMPULSE RESPONSES OF THE COINTEGRATING SYSTEMS 

 For the cases that I have found some evidence of cointegration will be interesting to see 

how these cointegrating relations and the variables of the respective systems respond to various 

shocks. 

 In the m-p, y, R system, I have identified the money demand function as a cointegrating 

relation when I use simple sum M1, M2, and Divisia M1 as money measures. In Figures 4.7-4.9 

we can see the persistence profile of system-wide shocks to the cointegrating vector for the S1, S2 

and D1 cases respectively. We observe that a positive shock to the system is quite persistent on the 

cointegrating vector and it is only absorbed after about 20 quarters for all three monetary 

aggregates. In Figures 4.10-4.11 I present the impulse response of the cointegrating vectors to 

shocks to specific variables of the system. In Figure 4.10, I shock real per capita output and in 

panels A, B and C we can see the impulse responses for the case of S1, S2, and D1 respectively. 

For S1 in panel A, the positive shock produces a positive response to the cointegrating relation for 

the first 6 quarters and then it becomes negative. The effect of the shock when I use S2 and D1 is 

quite different since the shock produces a negative response of the cointegrating vector for the first 

quarters before it is absorbed. When the equation that is shocked is that of the real money balances 

we see that this shock is absorbed in about 25 quarters for all three money measures but the shock 

has a negative short-term effect to the cointegrating vector when D1 is used. 
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 In the five variable system, the only case where I both found cointegrating relations and I 

was able to identify the expected by the theory cointegrating vectors, was when Divisia M1 was 

used as the monetary aggregate. In Figure 4.12 we see that a positive system-wide shock produces 

a positive shock to both identified cointegrating vectors. The biggest part of the shock is absorbed 

in the first 12 quarters but then the speed of adjustment to the respective long-run relations is very 

slow. 

 In Figure 4.13 I present the impulse response of the two cointegrating relations to a shock 

in the real per capita output. The consumption-output great ratio is below its long-run equilibrium 

for a period of about 10 quarters and then it slowly adjusts. The money demand relation does not 

show such a big impact but it oscillates around the long-run equilibrium, while both relations show 

long persistence. In Figures 4.14 and 4.15 we see that shocks to the real Divisia M1 money balances  

and the user cost of money affect the money demand cointegrating relation more that the 

consumption-output great ratio and both cointegrating vectors tend, although slowly, to return to 

their long-run equilibria.  

 Finally, it is interesting to see what are the effects of different shocks to the system’s 

variables. In Figures 4.16 and 4.17 I present the impulse responses of those variables to one 

standard deviation shocks to real per capita output and real money balances. The output shock 

produces a positive response to all the other variables at the impact period but this positive effect 

dies out and becomes permanently negative after about 8 periods, with the exception of money 

balances that seems to be negative from the beginning. In the case of an one standard deviation 

shock to the money demand equation, we can see in Figure 4.17 that investment and output respond 

positively in the first 10 quarters, then the effect becomes negative for about 8 quarters but they 

return to the positive territory and stay there permanently. The impulse response of consumption 

to the one standard deviation shock to the real money balances is positive for all periods. 
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 The impulse responses in Figures 4.16 and 4.17, are consistent with what I expected from 

economic theory and econometrics of non-stationary variables. We see that for both the real per 

capita output and the real balances shock, the most volatile variable of the system is investment. 

Also, consumption appears to be at least volatile variable which is consistent with the permanent 

income hypothesis. Individuals spread the effects of the shocks over many periods decreasing the 

volatility of per capita real consumption. 

Finally, from Figures 4.7-4.17, we see that, in general, although slowly, the cointegrating 

relations tend to revert to their long run equilibria, while the specific variables seem to be 

permanently affected by shocks to the system. This of course is expected, as in section 4.3.1 I have 

concluded that the variables are I(1) or non-stationary. The important property of integrated 

variables is that a shock will permanently affect their levels - they do not revert to a constant mean 

or a deterministic trend. 

4.6 CONCLUSIONS 

 According to the balanced growth theory, as we have seen, the great ratios are expected to 

be stationary. In this paper, using a simple real business cycle model of the general class proposed 

by Kydland and Prescott (1982) and where total factor productivity evolves according to a random 

walk with drift process, I tested the stationarity of the great ratios. Evidence against the stationarity 

of the great ratios is evidence against the balanced growth theory. The necessary but not sufficient 

condition for a number of series to be cointegrated is that all the series in question are integrated 

of the same order of integration. Applying the Dickey-Fuller (1981) and Phillips-Perron (1988) 

tests for unit roots I concluded that all series have a unit root or they are I(1) according to the Engle 

and Granger (1988) terminology with the exception of CL, the currency equivalence L money 

measure, and c-y, the consumption-output great ratio which were found to be stationary or I(0). 



 130 

 In Section 4.4.2, I use the real variable system [c, i, y] and apply the Johansen and Juselius 

(1992) maximum likelihood cointegration testing procedure. Although, the theory predicts two 

cointegrating vectors, I do not find evidence for any such vectors, not even the c-y great ratio that 

was found to be stationary as we have seen before. 

 In Section 4.4.3, where I use the system [m-p, y, R], I expected to find one cointegrating 

vector, the money demand function. There is evidence of one cointegrating relationship only when 

S1, S2 and D1 are used as monetary aggregates. The coefficients of the interest rates on the 

identified cointegrated vectors are as expected small and positive with the exception of S2 where 

it is negative. The coefficients on output are all negative as money demand theory suggests but the 

elasticity of real money balances with respect to output is significantly greater than –1. 

 In the system where I include all five variables [c, i, m-p, y, R], in Section 4.4.4, the theory 

predicts three cointegrated vectors, the two great ratios and the money demand function. The ML 

cointegration tests show no cointegrated vectors when D2, D3, and C1 are used as monetary 

aggregates, two when D1 is used and one with all other measures. In the case of D1, the joint 

hypothesis that the two cointegrating vectors are the money demand function and the consumption-

output great ratio cannot be rejected and when these two vectors are identified, the coefficient of 

the user cost of money is small and positive as predicted, the coefficients of output have the correct 

sign but are different than –1. 

 Thus, the cointegrating vectors that I both identified and they are consistent with the theory 

are the money demand function in the [m-p, y, R] system when M1, M2 and D1 is used, and in the 

[c, i, m-p, y, R] system, the consumption-output great ratio and the money demand function when 

D1 is used. The impulse responses of those cointegrating vectors to system wide shocks and to 

shocks to specific variables of interest in general are consistent with the theory. The cointegrating 
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vectors show long persistence but they return to their long-run equilibria. The specific series are 

permanently affected by the shock as it is expected for non-stationary variables. 

 Summarizing, the only cases where I find evidence of cointegrating vectors that are 

predicted by the theory is when simple sum M1, simple sum M2 or Divisia M1 monetary aggregates 

are used. Thus, the theory is not supported at all by these data when broader measures of money 

are used, and there is some evidence that the theory is correct when the narrowest of the money 

measures are used. The results appear not to be sensitive to the different monetary aggregates as in 

simple sum, Divisia or currency equivalent, but to how broad the specific money measure is. 
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TABLE 4.1 

       

 A. Augmented Dickey-Fuller        B. Phillips-Peron Test  

Variable Level 1st Diff.   Level 1st Diff. Decision 

       

   Real Variables    

       

c -3,14 -4,84  -2,11 -10,56 I(1) 

i -2,82 -4,93  -1,99 -6,91 I(1) 

y -4,16 -5,51  -2,90 -8,94 I(1) 

       

   Monetary Aggregates    

       

S1 -2,18 -2,88  -1,55 -5,18 I(1) 

S2 -2,46 -3,53  -1,79 -5,50 I(1) 

S3 -2,27 -2,96  -1,44 -4,29 I(1) 

SL -2,65 -2,84  -1,34 -4,05 I(1) 

D1 -2,23 -2,98  -1,54 -5,18 I(1) 

D2 -2,49 -3,30  -1,86 -4,68 I(1) 

D3 -2,62 -3,16  -1,93 -4,21 I(1) 

DL -3,13 -3,33  -2,08 -4,11 I(1) 

C1 -1,83 -4,27  -1,55 -9,12 I(1) 

C2 -3,34 -5,94  -3,36 -11,45 I(1) 

C3 -3,35 -6,00  -3,36 -10,99 I(1) 

CL -3,56 -5,94  -3,50 -10,89 I(0) 

       

   

Interest Rate and User 

Costs    

       

R -2,23 -4,00  -2,11 -9,98 I(1) 

UC1 -1,56 -5,03  -1,72 -12,13 I(1) 

UC2 -2,23 -5,57  -2,25 -11,85 I(1) 

UC3 -2,27 -5,82  -2,27 -11,62 I(1) 

UCL -2,27 -5,92  -2,28 -11,62 I(1) 

       

   Great Ratios    

       

c-y -4,23 -  -3,50 - I(0) 

i-y -2,01 -4,58  -1,48 -10,71 I(1) 

              

The 95% critical value for the tests is -3.44   
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TABLE 4.2 

   JOHANSEN ML COINTEGRATION TESTS 

Null Hypothesis  

 

 
 

 

 

 
 

 Null Hypothesis 

 

 
 

 

 

 
 

  System c, i, y     System SL, y, R   

          

r = 0  24,0968  31,1647  r = 0 19,3580  39,9943 

r <= 1  5,1422  7,0679  r <= 1 15,1258  20,6363 

r <= 2  1,9257  1,9257  r <= 2 5,5105  5,5105 

          

  System s1, y, R     System D1, y, UC1  

          

r = 0  22,8295  42.9696*  r = 0 25,1522  51.4949* 

r <= 1  14,2367  20,1400  r <= 1 20.6393*  26.3427* 

r <= 2  5,9034  5,9034  r <= 2 5,7034  5,7034 

          

          

  System S2, y, R     System D2, y, UC2  

          

r = 0  25,2199  44.1327*  r = 0 20,6617  37,2747 

r <= 1  13,9636  18,9128  r <= 1 8,6274  16,6131 

r <= 2  4,9492  4,9492  r <= 2 7,9857  7,9857 

          

  System S3, y, R     System D3, y, UC3  

          

r = 0  17,9820  36,9006  r = 0 22,3035  38,1343 

r <= 1  14,7247  18,9186  r <= 1 9,4971  15,8308 

r <= 2  4,1939  4,1939  r <= 2 6,3337  6,3337 

* Statistically significant at the 5% level.       
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TABLE 4.2 (CONTINUED) 

         

     

Null Hypothesis  

 

 
 

 

 

 
 

 Null Hypothesis  

 

 
 

            

         

  System DL, y, UCL      

         

r = 0  24,8582  39,7429  r = 0  35,9516 

r <= 1  9,2373  14,8848  r <= 1  19,0849 

r <= 2  5,6475  5,6475  r <= 2  6,8046 

         

  System C1, y, R       

         

r = 0  19,8895  37,1179  r = 0  35,8469 

r <= 1  13,2308  17,2284  r <= 1  18,7241 

r <= 2  3,9976  3,9976  r <= 2  6,4875 

         

         

  System C2, y, R       

         

r = 0  16,3343  34,9992     

r <= 1  11,6640  18,6650     

r <= 2  7,0010  7,0010     

                  

* Statistically significant at the 5% level.     
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TABLE 4.3 

      

          MULTIVARIATE HYPOTHESIS TESTING  

      

   H0: Trend = 0   

System VAR order Coint. Vectors (Prob.)     

      

c, i, y  3 0 -   

      

  

System m-p, y, 

R    

      

Monetary   H0: Trend = 0  

 

H0: 
 

Aggregate VAR order Coint. Vectors (Prob.)   (Prob.) 

      

S1 6 1 0,460  0,000 

S2 6 1 0,172  0,000 

S3 6 0 -  - 

SL 6 0 -  - 

D1 4 2 0,080  0,000 

D2 3 0 -  - 

D3 3 0 -  - 

DL 3 0 -  - 

C1 6 0 -  - 

C2 6 0 -  - 

C3 6 0 -  - 

CL 6 0 -  - 
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TABLE 4.4 

       

  ESTIMATES OF COINTEGRATED VECTORS 

       

       

      Monetary Aggregate     

       

Variable   Sum M1   Sum M2   Divisia M1 

       

m-p  1,0000  1,0000  1,0000 

  (normalized)  (normalized)  (normalized) 

       

Y  -0,3118  -0,5938  -0,4513 

  (0.0540)  (0.1381)  (0.0766) 

       

R  0,0387  -0,0224  0,0032 

  (0.0044)  (0.0079)  (0.00001) 

              

Note: the numbers in parentheses are standard errors.   
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TABLE 4.5  

   JOHANSEN ML COINTEGRATION TESTS    

Null Hypothesis  

 

 
 

 

 

 
 

 Null Hypothesis  

 

 
 

 

 

 
 

  System c, i, S1, y, R      System c, i, SL, y, R   

           

r = 0  31,5090  92.4096*  r = 0  39.5728*  93.3766* 

r <= 1  28,2196  60,9006  r <= 1  21,9276  53,8038 

r <= 2  19,6582  32,6811  r <= 2  16,8483  31,8762 

r <= 3  10,3509  13,0229  r <= 3  8,7745  15,0279 

r <= 4  2,6720  2,6720  r <= 4  6,2534  6,2534 

           

  System c, i, S2, y, R      System c, i, D1, y, UC1  

           

r = 0  33,8207  90.6507*  r = 0  33,3307  101.6186* 

r <= 1  23,8877  56,8300  r <= 1  31,4833  68.2879* 

r <= 2  19,4602  32,9423  r <= 2  25.9482*  36,8046 

r <= 3  9,8658  13,4821  r <= 3  8,0636  10,8563 

r <= 4  3,6163  3,6163  r <= 4  2,7928  2,7928 

           

  System c, i, S3, y, R      System c, i, D2, y, UC2  

           

r = 0  33,0894  88.8732*  r = 0  36,2285  83,1006 

r <= 1  22,1154  55,7838  r <= 1  22,3939  46,8721 

r <= 2  20,1947  33,6684  r <= 2  12,0365  24,4782 

r <= 3  9,5318  13,4738  r <= 3  7,2629  12,4417 

r <= 4  3,9419  3,9419  r <= 4  5,1788  5,1788 

* Statistically significant at the 5% level.        
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TABLE 4.5 (CONTINUED) 

   JOHANSEN ML COINTEGRATION TESTS    

Null Hypothesis  

 

 
 

 

 

 
 

 Null Hypothesis  

 

 
 

 

 

 
 

  System c, i, D3, y, UC3     System c, i, C2, y, R   

           

r = 0  37,3855  84,0647  r = 0  43.6680*  101.9456* 

r <= 1  23,3814  46,6791  r <= 1  24,5939  58,2776 

r <= 2  11,8005  23,2977  r <= 2  19,0078  33,6838 

r <= 3  7,4843  11,4972  r <= 3  11,3930  14,6760 

r <= 4  4,0129  4,0129  r <= 4  3,2830  3,2830 

           

  System c, i, DL, y, UCL     System c, i, C3, y, UC1  

           

r = 0  42.4736*  88.9939*  r = 0  45.0046*  103.3418* 

r <= 1  22,7414  46,5203  r <= 1  23,8950  58,3372 

r <= 2  12,1491  23,7788  r <= 2  19,1063  34,4421 

r <= 3  7,9328  11,6297  r <= 3  12,2848  15,3358 

r <= 4  3,6969  3,6969  r <= 4  3,0510  3,0510 

           

  System c, i, C1, y, R      System c, i, CL, y, UC2  

           

r = 0  37,0042  82,4623  r = 0  44.0516*  101.3749* 

r <= 1  20,1174  45,4581  r <= 1  23,3970  57,3234 

r <= 2  15,3289  25,3407  r <= 2  18,9397  33,9264 

r <= 3  7,8310  10,0118  r <= 3  12,0846  14,9867 

r <= 4  2,1808  2,1808  r <= 4  2,9022  2,9022 

* Statistically significant at the 5% level.        
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TABLE 4.6 

 
      

  MULTIVARIATE HYPOTHESIS TESTING IN THE c, i, m-p, y, R SYSTEM 

       

                   Hypotheses Testing   

Monetary   

 

 
 

 

 
 

 

 
 

 

 
 

Aggregate VAR order r         

       

S1 6 1 0,088 0,596   

S2 6 1 0,045 0,017   

S3 6 1 0,009 0,021   

SL 6 1 0,002 0,001   

D1 6 2 - - 0,618 0,394 

D2 6 0 - -   

D3 6 0 - -   

DL 6 1 0,000 0,001   

C1 6 0 - -   

C2 6 1 0,000 0,002   

C3 6 1 0,000 0,001   

CL 6 1 0,000 0,001   

              

Note: r is the number of cointegrating vectors. The numbers in hypothesis testing are probabilities.For the Divisia monetary 

aggregates R refers to the corresponding user costs.    
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TABLE 4.7 

   ESTIMATES OF COINTEGRATED VECTORS   

          

          

    Monetary Aggregate is S1      Monetary Aggregate is D1     

          

Variable   

Consumption-

Output   Money Demand   

Consumption-

Output   Money Demand   

          

c  1,0000  0,0000  1,0000  0,0000  

  (normalized)  (restricted)  (normalized)  (restricted)  

          

i   0,0000  0,0000  0,0000  0,0000  

  (restricted)  (restricted)  (restricted)  (restricted)  

          

m-p  0,0000  1,0000  0,0000  1,0000  

  (restricted)  (normalized)  (restricted)  (normalized)  

          

y  -1,3874  -0,3753  -1,3860  -0,4662  

  (0.0266)  (0.0594)  (0.0274)  (0.0624)  

          

R  0,0000  0,0406  0,0000  0,0031  

  (restricted)  (0.0041)  (restricted)  (0.000003)  

          

Trend  0,0000  0,0000  0,0000  0,0000  

  (restricted)  (restricted)  (restricted)  (restricted)  

                    

Note: the numbers in parentheses are standard errors.      
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Figure 4.1. The Logarithms of Consumption Investment and Output 

 

Figure 4.2. Simple-Sum M1, Divisia M1 and Currency Equivalence M1 
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Figure 4.3. Simple-Sum M2, Divisia M2 and Currency Equivalence M2 

 

Figure 4.4. Simple-Sum M3, Divisia M3 and Currency Equivalence M3 
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Figure 4.5. Simple-Sum L, Divisia L and Currency Equivalence L 

 

Figure 4.6. The y-c and i-c great ratios 
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Figure 4.7. Cointegrating Vector with Sum M1 

 

 
 

Figure 4.8. Cointegrating Vector with Sum M2 
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Figure 4.9. Cointegrating Vector with Divisia M1 
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Figure 4.10. Cointegrating Vector IR to y Figure 4.11. Cointegrating Vector IR to m-p 

A. m-p = Sum M1  A. m-p = Sum M1   

 

 
 

 
 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

B. m-p = Sum M2  B. m-p = Sum M2   

 

 
 

 

 

  

  

  

  

  

  

 

  

  

  

  

  

  

  

  

  

C. m-p = Divisia M1  C. m-p = Divisia M1  
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Figure 4.12. Persistence of C.V.'s to System-Wide Shocks 

 

Figure 4.13. Impulse Response of C.V.'s to Output Shocks 
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Figure 4.14. Impulse Response of C.V.'s to Real Money Balances Shocks 

 

Figure 4.15. Impulse Response of C.V.'s to User Cost of Money Shocks 
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Figure 4.16. Impulse Responses to Output Shocks 

 

Figure 4.17. Impulse Responses to Real Money Balances Shocks 
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CHAPTER 5 

CONCLUSION 
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In chapter 2 of this thesis, I have tested the absolute purchasing power parity theory in 17 

countries using the Fisher and Seater (1993) and King and Watson (1997) testing methodologies. 

Although, in the literature, little evidence is found in support of PPP, the results using the long-run 

derivative and the long-run multiplier in Chapter 2 of this thesis, provide strong evidence that PPP 

holds in the long run. Most of the researchers that deal with the theory of  PPP, perceive the lack 

of cointegration between the relative price ratio and the exchange rate as a point where testing has 

to stop, since this is treated as evidence that PPP does not hold and the testing stops at that point. 

In this thesis, after testing for the time series properties of the series, I tested for cointegration. In 

the case where the series would have been found to have a common stochastic trend, PPP testing 

would have taken a different direction. I would examine whether the coefficients of the 

cointegrating vector satisfy the requirements for PPP to hold, that is, the coefficient on the relative 

price ratio should be equal to 1, and also test causality, such that innovations in the relative price, 

cause the innovations in the exchange rate, if PPP holds. Rejecting cointegration, I was able to use 

the Fisher and Seater (1993) and King and Watson (1997) tests. Cointegration is not a necessary 

nor a sufficient condition for PPP to hold. 

In Chapter 3, I model the historical evolution of six energy future prices, in an effort to 

produce in sample forecasts of the mean and volatility of these series. Visual inspection of the 

series and formal testing, made evident the presence of volatility clustering and a time-varying 

heteroscedasticity. The selection of the optimum lag structure in the autoregressive representation 

of the series, ensured that no linear dependencies were present in the error term. The best fitted 

model for the conditional variance was then selected to account for nonlinear processes in the 

disturbance terms. The actual values of the series were lying within the 95% confidence band 

constructed with the conditional variance. I also showed that the forecast errors and the forecast 

variance are smaller using the conditional variance in short-term forecasts, than using the 

unconditional one. This of course happens because the unconditional variance is characterized by 
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long memory relative to the conditional one. The unconditional variance puts the same weight to 

shocks that happened many periods in the past, while conditional variance weights more heavily 

recent realizations of the variable in question. 

In Chapter 4, I test the balanced growth theory and the existence of a stable money demand 

function. This is done using three different monetary aggregation procedures, the simple sum, 

Divisia, and currency equivalent. It is interesting to see if the results of these tests are sensitive to 

the monetary aggregate that is used. Most of the variables of the system are found to be 

nonstationary, and thus, the Johansen and Juselius (1992) maximum likelihood cointegration test 

is used to identify in the system the cointegrating vectors that are predicted by the balanced growth 

and monetary theory. Cointegrating vectors that are predicted by the theory are only identified 

when the simple sum M1, simple sum M2, and Divisia M1 monetary aggregates where used. 

According to these findings, the results appear not to be sensitive to the monetary aggregate that is 

used but to the level of aggregation. The narrowest money specifications seem to better support the 

theory. 
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