

Clinical Exercise Physiology

Diabetes Mellitus

Dr. George Panayiotou Assistant Professor

Presentation Content

- Definition
- Scope
- Pathophysiology
- Clinical Considerations
- History and Physical Exam
- Diagnostic Testing

- Exercise Testing
- Treatment
- Exercise Prescription
- Exercise Recommendations
- Physiological Adaptations and Benefits

Definition

Diabetes mellitus

- A group of metabolic diseases
- Characterized by inability to produce sufficient amounts of insulin or to use it properly
- -Result—hyperglycemia

Definition (continued)

- -Places affected individuals at risk for:
 - Microvascular diseases
 - -Retinopathy
 - -Nephropathy
 - Macrovascular diseases
 - -Cardiovascular
 - -Cerebrovascular
 - Neuropathies
 - -Autonomic
 - -Peripheral

Scope

Afflicts ~26 million in United States

- Approximately 25% are undiagnosed
- Number with diabetes tripled in past 30 yr
- Estimates of doubling in next 15 to 20 yr
- A worldwide problem
- Reasons for epidemic
 - Increasing overweight and obesity
 - Increasing sedentary lifestyle
 - Aging of population (baby boomers becoming golden boomers)

Scope (continued)

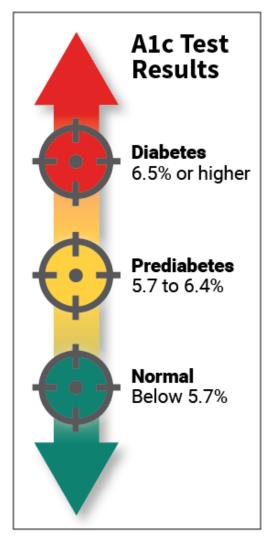
- Diabetes-related death rate two times that of age-matched, nondiabetic individuals
- Huge associated health care costs, ~\$174 billion annually

Pathophysiology

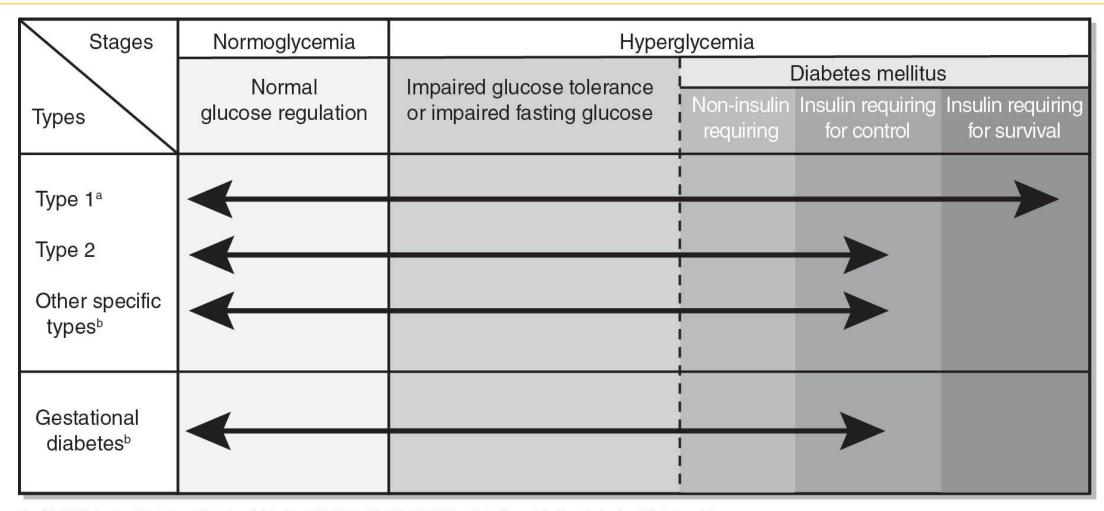
Diabetes categories

- Type 1: beta-cell destruction leading to insulin deficiency
 - Immune mediated (autoimmune disease)
 - Idiopathic
- Type 2: ranges from insulin resistance to insulin deficiency
 - Could include insulin secretion defect, insulin resistance, or both
 - Strong genetic influence
 - 90% to 95% of all diabetes types

Pathophysiology (continued)


Other types

- Genetic beta-cell function defect
- Genetic insulin action defect
- Diseases of pancreas
- Endocrinopathies
- Drug or chemical induced
- Infections


Gestational

- Glucose intolerance onset or first recognition with pregnancy
- NOTE: Insulin requirement can occur with any form of diabetes, but its use does not classify the diabetes type.

Pathophysiology (continued)

Figure 1

Copyright © 2011 American Diabetes Association. From Diabetes Care®, Vol. 34, Suppl. 1, 2011; S62-S69. Reprinted with permission from The American Diabetes Association.

Pathophysiology (continued)

Complications

- –Acute complications
 - Hyperglycemia
 - Diabetes out of control
 - -Diabetic ketoacidosis
 - -Hyperosmolar nonketotic syndrome
 - Hypoglycemia
 - -Too much insulin or selected antidiabetic oral agent
 - Too little carbohydrate intake
 - -Missed meals
 - -Excessive or poorly planned exercise

Pathophysiology (continued)

-Chronic complications

- Macrovascular
 - -Large-vessel disease of coronary arteries, cerebrum, and peripheries
- Microvascular
 - -Small-vessel disease of eyes and kidneys
- Neuropathy
 - Affecting both the peripheral and autonomic systems

Clinical Considerations

Signs and symptoms

- Polydipsia (excessive thirst)
- Polyuria (frequent urination)
- Unexplained weight loss
- Infections and cuts that are slow to heal
- Blurry vision
- Fatigue
- Most common in those with type 1
- Less often or never in those with type 2
 - 25% of those with diabetes do not know it

History and Physical Exam

Medical history review

- Acute and chronic complications
- Laboratory values for HbA1c, plasma glucose, lipids, and proteinuria
- Blood pressure
- Self-monitoring blood glucose results
- Body weight and body mass index
- Medication use and timing
- Exercise history
- Nutrition plan
- Other non-diabetes-related health issues

History and Physical Exam (continued)

Physical exam focuses on potential diabetes complications:

- Elevated resting heart rate
- Loss of sensation
- Loss of reflexes (especially lower extremities)
- Foot sores or ulcers with poor healing
- Excessive bruising
- Retinal vascular abnormalities

Diagnostic Testing

ADA recommends diagnostic testing on all those with diabetes and those who:

- Are physically inactive
- Have a first-degree relative with diabetes
- Are of a high-risk race or ethnicity (e.g., African American, Latino, Native American, Pacific Islander)
- Are women who delivered a baby weighing more than 9 lb (4 kg) or were diagnosed with gestational diabetes

Diagnostic Testing (continued)

- Have hypertension (≥140/90 mmHg or on therapy for hypertension)
- Have high-density cholesterol ≤35 mg/dl and/or triglycerides ≥250 mg/dl
- Have A1c ≥5.7, an impaired fasting glucose or glucose tolerance test
- Are women with polycystic ovarian syndrome
- Have other clinical conditions associated with insulin resistance (e.g., severe obesity, acanthosis nigricans)
- Have a history of CVD
- Are at least 45 years old

Diagnostic Testing (continued)

Diabetes diagnostic criteria:

- $A1c \ge 6.5\%$, or
- Fasting plasma glucose ≥126 mg/dl (7.0 mmol/L), or
- Two-hour plasma glucose ≥200 mg/dl (11.1 mmol/L) during an oral glucose tolerance test, or
- Classic symptoms of hyperglycemia or hyperglycemic crisis plus a random plasma glucose ≥200 mg/dl (11.1 mmol/L). The classic symptoms of diabetes include polyuria, polydipsia, and unexplained weight loss.
- Each diagnostic test should be repeated for confirmation of results.

Exercise Testing

Cardiovascular exercise testing is indicated for those with one or more of the following:

- -Age >40 yr, with or without CVD risk factors other than diabetes
- -Age > 30 yr and
 - Type 1 or type 2 diabetes of >10 yr
 - Hypertension
 - Cigarette smoking
 - Dyslipidemia
 - Proliferative or preproliferative retinopathy
 - Nephropathy including microalbuminuria
- Any of the following, regardless of age:
 - Known or suspected CAD, cerebrovascular disease, and/or peripheral artery disease
 - Autonomic neuropathy
 - Advanced nephropathy with renal failure

Exercise Testing (continued)

- May be beneficial if exercise training intensity is planned to be vigorous (i.e., >60% of peak VO₂)
- Resistance and range of motion exercise testing as needed for exercise prescription development

Treatment

- Medical nutrition therapy (MNT)
 - May ultimately focus on large weight loss from a complete meal replacement diet or bariatric surgery
- Self-monitoring of blood glucose
- Diabetes self-management education
 - Delivered by a certified diabetes educator (can be a clinical exercise physiologist who is certified)

- Medication
- Requires involvement of patient, family members, and health care team (physician [primary care or endocrinologist]), nurse or nurse practitioner, diabetes educator, registered dietitian, clinical exercise physiologist, and a behaviorist)

Oral glucose-lowering medication types

- Sulfonylureas (first and second generation)
- Meglitinides
- Biguanides
- Thiazolidinediones
- Alpha-glucosidase inhibitors
- Incretins and amylines
- DPP-4 inhibitors
- Insulin
 - Rapid acting
 - Short acting
 - Intermediate acting
 - Long acting

- Focused on guidelines developed by the American Diabetes Association (ADA)
- Provide evidence-based care
 - Regular HbA1c testing
 - Dilated eye exam
 - Foot exam
 - Blood pressure monitoring
 - Blood lipid assessment
 - Renal function testing
 - Smoking cessation counseling
 - Flu or pneumococcal immunizations
 - Diabetes education
- Focus should be on the prevention and treatment of abnormal blood glucose before and after exercise

- Little risk of hypoglycemia for those controlled by diet or oral glucose-lowering medications
- If before exercise:

Blood glucose	Exercise intensity	Exercise duration	Preexercise CHO consumption	Blood glucose
<100 mg/dl	Low	Short	5-10 g	<100 mg/dl
	Moderate	Moderate	25-45 g	
	Moderate	Long	45 g	
≥100 mg/dl	Low	Short	None	≥100 mg/dl
100 to 180 mg/dl	Moderate	Moderate	15-30 g	100 to 180 mg/dl
	Moderate	Long	30-45 g	

If preexercise hyperglycemia (>300 mg/dl):

- Check urine for ketones and postpone exercise if moderate to high
- Allow exercise if ketones are low
 - Make sure patient is well hydrated

If postexercise hypoglycemia (<70 mg/dl):

- Monitor glucose for several hours postexercise
- Use CHO to stabilize glucose
- Suggest frequent postexercise monitoring in future

If postexercise hyperglycemia:

- More likely in type 1 than type 2
- Treat as needed to lower glucose to normal range

Exercise Prescription Review

Consider:

- Macrovascular disease—heart and peripheral vasculature
- Peripheral neuropathy
- Autonomic neuropathy—reduced HR, BP, and blood flow redistribution control
- Retinopathy
- Nephropathy

Exercise Recommendations

- Perform at a time of day most convenient for the patient with respect to ability to assess and control blood glucose
 - Avoid peak insulin action
 - Avoid late evening if on insulin or oral medications that lower blood glucose and risk hypoglycemia
 - Perform at similar times each day to maintain steady glucose levels

Exercise Recommendations (continued)

- Goal of 150 min/wk moderate or 60 to 75 min/wk vigorous exercise
- Perform low to moderate intensity due to potential cardiovascular disease; increase intensity only if CAD is ruled out
- Non-weight-bearing exercise may be necessary for those with peripheral neuropathy or vascular disease

Physiological Adaptations and Benefits

Acute exercise

- Improves blood glucose values
- Sustains postexercise blood glucose control
- Reduces hepatic glucose production
- Increases skeletal muscle glucose utilization

Physiological Adaptations and Benefits (continued)

Chronic exercise (i.e., exercise training)

- Improved overall metabolic control (blood glucose, insulin resistance)
- Blood pressure control and reduced hypertension risk
- Blood lipid improvements
- Reduced body fat and increased lean body mass
- Weight loss and improved weight maintenance
- Psychological and social well-being
- Delay or prevention of type 2 diabetes in those at risk

Conclusion

- Dealing with diabetes requires ongoing special attention.
- Exercise training should be encouraged based on its benefits, particularly in controlling cardiovascular disease related risk factors.
- Exercise training requires additional diligence in blood glucose monitoring to avoid the acute effects of hypoglycemia.
- Exercise training is an important method to help control blood glucose values.