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A B S T R A C T   

Background: Precision and personalized nutrition approaches aim to leverage human variability to design tailored 
dietary interventions to improve health. With an extensive range of technological advances and opportunities for 
integrative precision nutrition, a review of current and future global trends is needed. 
Scope and approach: The purpose of this review paper is to synthesize and critically appraise the latest de
velopments, potential applications and future research needs in the field of precision nutrition. Selected examples 
of international studies that implement nutritional genetic, epigenetics, genomics, metabolomics and meta
genomics approaches will be reviewed. 
Key findings and conclusion: Precision nutrition integrates genetic, metagenomic, metabolomic, physiopatholog
ical, behavioral and sociocultural cues to understand metabolism and human wellbeing and implement health 
actions. Such wide-ranging measures require advances in 1) high-throughput multi-omics techniques, and 2) 
integrative big data systems. Over recent decades, research in the fields of nutritional genetic, epigenetics, ge
nomics, metabolomics and metagenomics has accelerated exponentially. These approaches provide deep geno
typic and phenotypic insights into human variability in response to diet, which has informed a new era of 
personalized and precision nutrition interventions. Moreover, advances in big data and machine learning have 
paved the way for integrated precision nutrition applications across research, industry and healthcare. This 
review will consider each of these areas in turn, such that the outcomes of this research will assist with un
derstanding the latest developments and future consolidation trends in the field of precision nutrition.   

1. Introduction 

Suboptimal diet and nutritional imbalance are well established as 
contributors to the global burden of non-communicable diseaseswith a 
high incidence worldwide (Roth et al., 2018). Globally, in 2017, an 
estimated 11 million deaths were attributable to dietary risk factors, 
with more than half of these deaths associated with high sodium intake 
(Afshin et al., 2019). National dietary guidelines designed to influence 

consumers’ nutritional behavior and dietary patterns have had minimal 
impact (Kalmpourtzidou, Eilander, & Talsma, 2020). Thus, health tar
gets, as well as environmental targets, highlight the need for integrated 
population efforts to prioritize food-based guidelines that shift diets 
towards high intake of whole grains, fruit and vegetables, nuts and seeds 
and legumes (Springmann et al., 2020). However, the “one-size-fits-all” 
nature of national and international dietary guidelines does not account 
for the diverse biological and sociocultural factors that drive human 
conduct (Herforth et al., 2019). Human variability is wide-ranging, and 
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can include genetic, phenotypic, and physiological determinants, med
ical history, and lifestyle practices, such as dietary habits and physical 
activity, as well as sociocultural and socioeconomic factors, such as the 
food environment, gastronomy, and educational attainment (Ordovas, 
Ferguson, Tai, & Mathers, 2018). This range of potential dietary in
fluences has led to the emergence of personalized and precision nutri
tion investigations to improve dietary patterns (Ordovas et al., 2018), 
which are now central pillars of many national and international 
nutrition research priorities and position statements (Ferguson et al., 
2016; Kohlmeier et al., 2016). 

The connections between nutrition and wellbeing are numerous and 
wide-ranging, concerning both health maintenance as well as disease 
prevention and management. To operationalize individualized in
terventions to improve population and planetary health, the measure
ment and scoring of dietary intake is required (Martínez-González et al., 
2021). Nutritional status assessment has been routinely performed to 
identify and treat undernutrition, however efforts are now increasingly 
focused on quantifying the contributing factors to overnutrition and 
obesity (Martínez-González et al., 2021). Indeed, the concept of 
personalized nutrition has been a long-standing endeavor, which was 
first alluded to by the ancient Greeks, including Hippocrates (“your food 
is the base of your health), and Galen ("personal attitudes and unique 
responses to food”), and has since evolved to include nutriomics and the 
development of global tools to quantify and categorize individual di
etary intakes (Ordovas et al., 2018). 

The ultimate goal of personalized and precision nutrition is to pre
serve or ameliorate health and wellbeing using dietary interventions, 
products or services that leveraging human variability (Ferguson et al., 
2016; Ordovas et al., 2018). However, there is no international 
consensus on the definition of these terms, and terminology varies 
depending on the country, health field and scope of the research ques
tion (Bush et al., 2020). For example, the terms precision public health 
and precision health have been coined to consider the needs of digital 
health interventions and data-driven public health systems to prevent 
non-communicable diseases (Canfell et al., 2022), as well as the social 
determinants of health inequity (Olstad & McIntyre, 2019) when 
designing precision nutrition approaches. For the purpose of this review, 
personalized nutrition will be defined as an approach in which genetic, 
metagenomic, physiological, phenotypic, nutritional, and other relevant 
information are used to design tailored nutritional advice and support 
for each individual (Jinnette et al., 2021). In turn, the overarching term 
of precision nutrition is defined as a methodology to integrate genetic, 
metabolic and environmental information at scale, which can utilize 
high-throughput metabolomics, metagenomic and epigenetic ap
proaches (Ordovas et al., 2018). An overview of the components of 

precision nutrition harmonizing these health determinants is provided 
(Fig. 1). 

The techniques and technologies used in precision nutrition research 
are rapidly expanding, with global implications for future research 
priorities, commercialization of products and services and imple
mentation into health services and public health policy. Thus, the aim of 
this current document is to synthesize and critically appraise the latest 
developments, potential applications and future research needs in the 
field of precision nutrition. Within the scope of a narrative review, 
selected examples of studies that utilize nutritional genetic, epigenetics, 
genomics, metabolomics and metagenomics approaches will be identi
fied and objectively analyzed based on their global relevance and health 
impact. 

1.1. Overview of precision and personalized nutrition approaches 

Personalized nutrition considers the differential response to dietary 
intake due to individual endogenous aspects that influence nutrient 
intake and uptake, metabolism, assimilation, and excretion (Ferguson 
et al., 2016). Therefore, tailor-made dietary prescription for the pre
vention and treatment of diverse metabolic disorders should include the 
phenotypic evaluation and bioinformatics processing of metabolic 
pathways and epi/genetic differences, lifestyle exposome heterogeneity, 
metagenomic variation, and psychological and behavioral features 
related to health (de Toro-Martín, Arsenault, Després, & Vohl, 2017). 

Personalized nutrition strategies can involve not only the assessment 
of diet and health using questionnaire-based tools, but also the use of 
“omics” technologies (nutrigenomics, metagenomics, and metab
olomics) to develop optimal and customized dietary support that pro
motes health maintenance and disease prevention for each individual 
(Ferguson et al., 2016). As described earlier, precision nutrition in
tegrates information at scale to consider an individual’s genomic back
ground, including any nutrigenetic interactions identified from deep 
phenotyping, as well as socioeconomic and psychosocial characteristics, 
family history, perinatal feeding information, health status and other 
clinical features, such as circadian rhythm, physical activity, dietary 
patterns and eating behaviors, and food environments, with a wide 
spectrum of bioinformatics data on metabolic pathways (de Toro-Martín 
et al., 2017). An important distinction between both concepts is that 
personalized nutrition considers genomic and other “omics” features of 
an individual’s diet and metabolism that are predominantly fixed and 
therefore don’t change over time, whereas precision nutrition adopts an 
integrative, dynamic and holistic approach to developing comprehen
sive recommendations for individuals and population subgroups (Na
tional Institutes of Health, 2020). 

Abbreviations 

ApoE Apolipoprotein E 
BL baseline; 
DNAm DNA methylation 
FTO Fat mass and obesity associated gene 
FADS1 Fatty Acid Desaturase 1 
HATs histone acetyltransferases 
HDACs histone deacetylases 
MTHFR Methylenetetrahydrofolate reductase 
miRNAs microRNAs 
ML: machine learning 
mo month 
RCT randomized controlled trial 
SNP single nucleotide polymorphism 
TCF7L2 Transcription Factor 7 Like 2 
TL telomere length  

Fig. 1. Overview of the genetic, metabolic and diet and lifestyle components of 
an integrative precision nutrition approach. 
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The evidence base used to inform precision and personalized nutri
tion approaches is multidisciplinary, spanning in vitro and animal 
studies, high-resolution studies, epidemiology, and interventions, 
including randomized controlled trials (RCT). Many reviews of this field 
have been undertaken in recent years, which each focus on distinct 
techniques and scientific disciplines (Brennan & de Roos, 2021; Fergu
son et al., 2016; Jinnette et al., 2021; Ordovas et al., 2018; Ramos-Lopez 
et al., 2017). For example, a 2021 systematic review of RCTs aimed to 
examine the evidence for whether dietary intake is improved to a greater 
extent in participants randomly assigned to receive personalized nutri
tion advice compared with generalized dietary advice (Jinnette et al., 
2021). Outcomes from this review of eleven RCTs included a recom
mendation for a more comprehensive examination of the basis for 
personalization. While the majority of the included studies adopted a 
biological basis for personalization, the strategies to implement these 
interventions derived and delivered tailored dietary advice based on 
phenotypic or/and genotypic information. For example, some in
terventions selected genotypes known to influence chronic disease risk, 
such as disclosure of HLA-DRB1, which can increase rheumatoid 
arthritis risk three-fold (Sparks et al., 2018). In contrast, other studies 
selected genotypes known to impact on nutrient metabolism, such as the 
Apolipoprotein E, which regulates lipoprotein metabolism and is sub
sequently responsive to saturated fat intake (Celis-Morales et al., 2016; 
Nielsen & El-Sohemy, 2014). Other eminent reviews in the nutrition 
field have re-iterated that the successful design and delivery of precision 
nutrition interventions that incorporate biological data is likely to 
depend on advances in high-throughput biochemical assays, i.e., 
“omics” research focusing on reducing risk of obesity, diabetes and 
cancer (Ordovas et al., 2018). 

Within the scope of this review, the high-throughput “omics” tech
niques of nutritional genomics, epigenetics, metabolomics, and meta
genomics will be reviewed for their application in precision nutrition 
approaches (Fenech et al., 2011; Ferguson et al., 2016; Ramos-Lopez 
et al., 2017). These cutting-edge methodologies can be used separately, 
sequentially or integrated (e.g., multi-omics), for understanding human 
variability to improve or maintain optimal health and wellbeing. The 
computational and statistical methods for analysis of these 
high-throughput approaches is outside of the scope of this review, but 
has been covered elsewhere (Du et al., 2022). An overview of eleven 
selected studies employing precision and personalized nutrition ap
proaches is summarized in this appraisal (Table 1). These studies range 
from RCTs (Arpón et al., 2016; Celis-Morales et al., 2016; Fragiadakis 
et al., 2020; Horne, Gilliland, O’Connor, Seabrook, & Madill, 2020; 
Roager et al., 2019; Ulven et al., 2019; Li et al., 2022) to observational 
studies (Smith et al., 2008; Vangay et al., 2018) and short-term post
prandial studies (Berry et al., 2020), highlighting the multi-disciplinary 
applications of these approaches. The selected studies were undertaken 
in a range of European countries, including the UK, Ireland, Greece, 
Spain, Germany, The Netherlands, Finland, Sweden and Denmark, as 
well as Australia, Canada and the USA, including US immigrant Thai 
Hmong and Karen populations and Caribbean-origin Hispanics. 
High-throughput techniques used included shotgun sequencing-based 
metagenomics for characterizing microbiome diversity and function, 
and RT-qPCR for quantifying gene expression as well as metabolomic 
tools supported by big data analyses. 

1.2. Nutrigenetic approaches 

Nutritional genetics, or nutrigenetics, is broadly defined as the study 
of the effect of genetic variation on dietary response (Simopoulos, 
2010). Many studies of single nucleotide polymorphisms (SNPs) exist, 
with classic examples including SNPs in the MCM6, PAH and HLA-DQA1 
and HLA-DQB1 genes responsible for lactose intolerance (Enattah et al., 
2002), Phenylketonuria (Blau, van Spronsen, & Levy, 2010) and celiac 
disease (Megiorni & Pizzuti, 2012), respectively. In more recent de
cades, the escalating global burden of obesity has led to the study of 

genes responsible for energy homeostasis, such as the fat mass and 
obesity associated (FTO) gene (Livingstone, Celis-Morales, Nav
as-Carretero, et al., 2016). Polymorphisms in FTO have been shown to 
influence energy homeostasis and body composition, and to interact 
with dietary factors in relation to adiposity phenotypes and therapeutic 
responsiveness (Ramos-Lopez, Milton-Laskibar, Martínez, 2021). 
Despite this, in an individual meta-analysis of 9564 individuals 
participating in weight loss RCTs, such as the Diabetes Prevention Pro
gram and the Look AHEAD study, carriage of the FTO minor allele was 
not associated with differential change in adiposity after the interven
tion. Moreover, Livingstone et al. demonstrated that individuals car
rying the minor allele responded equally well to a weight loss 
intervention targeting diet or physical activity compared to those not 
carrying the risk variant (Livingstone, Celis-Morales, Navas-Carretero, 
et al., 2016). Thus, these investigations concluded that genetic predis
position to obesity associated with the FTO minor allele could be at least 
partly counteracted through such interventions, which is supported by 
observational research examining diet-gene interactions (Livingstone 
et al., 2022). As estimates for the proportion of variation explained by 
genetic for certain traits and conditions varies considerably depending 
on the population in question (Elks et al., 2012), such studies provide 
supportive evidence for diet and lifestyle interventions to improve 
health, in spite of genetic predispositions. 

Selected studies of personalized and precision nutrition have used 
nutrigenetic approaches to design and deliver tailored dietary advice 
(Table 1). The Food4Me study, undertaken between 2012 and 2014, was 
the first proof-of-principle RCT of personalized nutrition (Celis-Morales 
et al., 2016). In this study, participants from across seven European 
countries self-collected biological samples at home using buccal swabs 
at baseline, and blood spot cards at baseline, month 3 and month 6. The 
former were used to measure 5 genotypes known to impact on nutrient 
metabolism, FTO, FADS1, TCF7L2, ApoE, and MTHFR, while the later 
were used to measure plasma concentrations of glucose, total choles
terol, carotenoids, n-3 fatty acid index, 32 other fatty acids and vitamin 
D (Celis-Morales et al., 2015). After 6 months of the intervention, 
Celis-Morales et al. concluded that greater improvement in diet quality 
(2010 Healthy Eating Index), intake of energy, red meat, salt, saturated 
fat, and folate were achieved in participants who received personalized 
advice compared to the control. Three levels of personalization were 
implemented and hierarchically compared, with no additional benefit of 
genotype-based advice observed (L3) compared to diet and 
phenotype-based advice (L2). However, in secondary analyses of the 
Food4Me Study, evidence for a benefit of genotype-based advice was 
identified for reducing intake of foods high in added salt, sugars and 
saturated fat (Livingstone et al., 2021), and improving adherence to the 
Mediterranean diet (MedDiet), as reported elsewhere (Livingstone, 
Celis-Morales, Navas-Carretero, et al., 2016). This study remains one of 
the largest and most comprehensive personalized nutrition RCTs con
ducted to date. The nutrigenetics component, however, was limited to 
genotypes with the most scientific evidence for potential to benefit from 
changes in diet and physical activity, and personalization was manually 
implemented by trained researchers. Thus, integration of polygenic and 
automated processes, such as multi-omics and machine learning (ML), 
will amplify the future design, delivery and potential for impact of 
personalized RCTs. 

In the context of integrating polygenic and automated processes, a 
recent 4-month intervention incorporated genetic, phenotypic, and 
environmental information into a decision algorithm. This included the 
creation of genetic risk scores based on 95 SNPs related to energy ho
meostasis, enabling the personalized prescription of diets with different 
macronutrient distribution to over 200 Spanish subjects with over
weight/obesity (Ramos-Lopez et al., 2020). Regarding the influence of 
the genotype on the dietary management of blood cholesterol, it was 
reported that an energy-restricted and moderately high-protein diet 
might be more beneficial than a low-fat diet to reduce serum cholesterol 
among subjects with obesity who were carriers of the PPARGC1A 
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Table 1 
Overview of selected studies employing precision and personalized nutrition approaches.  

Approach Study, year Methodology Main findings 

Study design, duration, 
intervention 

Population (n, age range, 
health; country) 

Tool(s) used 

Nutrigenetics Celis-Morales 
et al., 2016 ( 
Celis-Morales 
et al., 2016) 
Food4Me 

RCT; 6 mo; participants 
randomized to one of three 
levels of personalization: L1: 
dietary advice based on current 
diet; L2: dietary advice based on 
current diet and phenotype; L3: 
dietary advice based on current 
diet, phenotype, and genotype. 

n = 1607; 18–79 y; healthy 
adults; seven European 
countries (UK, Ireland, 
Poland, Greece, Spain, 
Germany, NL) 

Dry blood spot cards (glucose, 
total cholesterol, carotenoids, 
n-3 fatty acid index, 32 other 
fatty acids, vitamin D) - 
collected at BL, 3 mo, 6 mo. 
Buccal swabs (FTO, FADS1, 
TCF7L2, ApoE, and MTHFR) – 
collected at BL 

Greater improvement in diet 
quality (2010 Healthy Eating 
Index), intake of energy, red 
meat, salt, saturated fat, and 
folate in participants who 
received personalized advice 
(L1+L2+L3) vs control 

Smith et al., 2008 
(C. E. Smith et al., 
2008) 

Cohort study; 2 y n = 920; 45–74 y; living in 
Boston, US 

Genotyping from peripheral 
blood lymphocytes (PLIN 6209 
T > C, PLIN 11482 G > A, PLIN 
13041 A > G, PLIN 14995 A >
T, PPARG Pro12Ala) – 
collected at BL 

In subjects with higher complex 
carbohydrate intake, the minor 
PLIN allele was protective 
against obesity, whereas in 
subjects with lower 
carbohydrate intake, the minor 
allele was associated with 
increased obesity. 

Nutrigenomics Horne et al., 2020 
(Horne et al., 
2020) NOW 

RCT; 12 mo; participants 
randomized to either the group 
lifestyle balance (GLF) program 
or the GLF + nutrigenomics 
program 

n = 140; >18 years; health 
adults; Canada 

Genotyping from Oragene ON- 
500 saliva collection kits 
(UCP1, FTO, TCF7L2, APOA2, 
PPARγ2, and MC4R) 

Only the GLB + nutrigenomics 
group reduced their total fat 
intake at follow-up, suggesting 
nutrigenomics can motivate 
long-term improvements in 
dietary fat intake above and 
beyond gold-standard 
population-based interventions. 

Ulven et al., 2019 ( 
Ulven et al., 2019) 
SYSDIET study 

RCT; 12 w; subset of SYSDIET 
study 

n = 88; 30–65 y; adults with 
metabolic syndrome; Finland 
and Sweden 

Gene expression using RT- 
qPCR (inflammation and lipid 
metabolism-related genes of 
PBMCs) 

The expression level of the gene 
tumor necrosis factor (TNF) 
receptor superfamily member 
1A (TNFRSF1A) was down- 
regulated, whereas the nuclear 
factor kappa-light-chain- 
enhancer of activated B cells 
(NF-κB) subunit, RELA proto- 
oncogene, was up-regulated in 
the Nordic diet compared to the 
control. 

Dordevic et al., 
2021 (Dordevic 
et al., 2021) 

Randomized postprandial 
transcriptomic study; 
participants were randomized to 
consume two isocaloric high-fat 
breakfast meals in a cross-over 
design. 

n = 19; 40–60 y; men with 
metabolic syndrome and age- 
and height-matched controls; 
Australia 

Global adipose tissue gene 
expression was measured by 
RT-qPCR – collected before and 
4 h postprandial. 

In response to the high-fat 
meals, increases in genes related 
to cellular nutrient responses 
were observed in control 
participants, with blunted 
response in men with metabolic 
syndrome. 

Nutriepigenetics Arpón et al., 2016 
(Arpón et al., 
2016) 
PREDIMED 

RCT; 5 y; participants 
randomized to one of three arms: 
a MedDiet supplemented with 
extra virgin olive oil (EVOO), a 
MedDiet supplemented with 
mixed nuts or a low-fat diet 
(control group). Subset of 
participants were analyzed for 
DNAm. 

n = 36; 60–70 y; adults at risk 
of CVD; Spain 

DNA methylation (eight CpGs 
methylation from venous blood 
samples) – collected at BL, 5 y 

Following a MedDiet was 
associated with changes in the 
epigenome through differential 
methylation of >50 genes, 
including eight genes related to 
inflammation (EEF2, COL18A1, 
IL4I1, LEPR, PPARGC1B, 
APKAPK2, IFRD1 and PLAGL1). 

Li et al., 2022 (Li 
et al., 2022) 
POUNDS lost trial 

RCT; 2y; individuals were 
randomized to one of four diets 
that contained either 15% or 
25% protein and 20% or 40% fat 
in a 2 × 2 factorial design 

n = 639; 30–70 y; overweight 
or obese and in good health 
with a BMI of 25–40; living in 
Boston or Baton Rouge, US 

BL blood DNAm levels were 
profiled by high-resolution 
methylC-capture sequencing 

In participants with the highest 
tertile of regional DNAm at 
TXNIP gene, average protein 
(15%) intake was associated 
with a greater reduction in 
insulin and HOMA-IR than high 
protein (25%) intake. 

Metabolomics Berry et al., 2020 ( 
Berry et al., 2020) 
PREDICT 1 

Postprandial metabolic 
responses to sequential mixed- 
nutrient dietary challenges 
(during a clinic visit and 13 days 
at-home) 

n = 1002; 18–65 y; healthy 
adults; UK 

Stool sample (gut microbiome 
via 16S rRNA high-throughput 
sequencing) – collected at BL 
Dry blood spot cards (C- 
peptide, triglyceride) – 
collected at BL, day 1–3 
Genotyping from blood 
samples (32 SNPs) – collected 
previously in TwinsUK study 
Continuous glucose monitoring 
– every 15 min 

The gut microbiome had a 
greater influence (7.1% of 
variance) than meal 
macronutrients (3.6%) for 
postprandial lipemia, but not 
for postprandial glycemia (6.0% 
and 15.4% respectively); 
genetic variants had a modest 
impact on predictions (9.5% for 
glucose, 0.8% for triglyceride, 
0.2% for c-peptide). 

Fragiadakis et al., 
2020 (Fragiadakis 

RCT; 12 mo; participants 
randomized to a low-carb or low- 

n = 49; 18-50y; healthy 
individuals; US 

Stool sample (gut microbiome 
via 16S rRNA high-throughput 

While BL microbiota 
composition was not predictive 
of weight loss, each diet 

(continued on next page) 
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Gly482Gly genotype (Ramos-Lopez, Samblas, et al., 2018). Likewise, the 
APOA1 (rs670) gene polymorphism showed important differential ef
fects on adiposity, cholesterol levels and insulin resistance after 12 
weeks on a hypocaloric diet in an intervention study comprised of one 
arm (de Luis, Izaola, Primo, & Aller, 2018). These findings highlight the 
potential for a holistic decision algorithm approach encompassing ge
netic, phenotypic and exogenous data that can be used to personalize 
dietary advice for improving or maintaining health. 

The scientific literature on diet-gene interactions in non-Caucasian 
populations remains under-represented. In a 2-year cohort study, 920 
Caribbean-origin Hispanics adults were genotyped for the Perilipin 
(PLIN) gene to examine whether dietary macronutrients, including foods 
high in complex carbohydrate, such as whole grains and vegetables, 
modulated the associations of the PLIN SNP with obesity (Smith et al., 
2008). Findings from this study identified that in subjects with higher 
complex carbohydrate intake, the minor PLIN allele was protective 
against obesity, whereas in subjects with lower complex carbohydrate 
intake, the minor allele was associated with increased risk of obesity. 
Plausible mechanisms identified in Caucasian populations (Smith et al., 
2008) are likely to apply here, including modulation of postprandial 
insulin and glucose responses, with downstream effects on lipolysis and 
energy homeostasis of adipocytes (Perez-Martinez et al., 2008). Findings 
for a PLIN-complex carbohydrate interaction in this cohort of 
Caribbean-origin Hispanic adults support the targeting of dietary advice 
based on genotypes. However, extending nutrigenetic research by 
examining a broader range of multi-race populations is needed to ensure 
that precision nutrition approaches are equitable, with the potential to 
be effective for every individual. Genome-wide association studies 
(GWAS) have contributed to the identification of a number of variants 
influencing individual responses to dietary counseling, which are 
located in or near genes related to energy intake, appetite, adipogene
sis/lipid metabolism, inflammation, and insulin resistance (Goni, 
Cuervo, Milagro, & Martínez, 2015). 

1.3. Nutrigenomic approaches 

Nutritional genomics, or nutrigenomics, refers to the study of the 
effect of bioactive dietary components on gene expression and function, 
consequently, on the proteome and the metabolome (Ramos-Lopez 
et al., 2017). In this sense, nutrient-gene expression interactions are 
defined as dietary intake exerting an influence on the expression of 
genes that regulate critical metabolic pathways (Fenech et al., 2011). 
This assertion statement contrasts with nutrigenetic approaches, where 
the genotype influences the dietary response (Brennan & de Roos, 
2021). Advances in nutrigenomics have provided a greater under
standing of the role of different bioactive foods and nutrients on meta
bolic pathways and homeostatic control (Ramos-Lopez et al., 2017). 
Notable examples of such diet-gene-metabolic homeostasis pathways 
include the role of sugars on the carbohydrate-responsive element 
binding protein (ChREBP) gene on glycolysis, fat intake on peroxisome 
proliferator-activated receptors (PPARs) on lipid metabolism and pro
tein on wGCN2/activating transcription factor 4 (ATF4) and mTORC1 
pathways that regulate lipogenesis (Haro, Marrero, & Relat, 2019). Al
terations in these pathways are often responsible for the onset of 
metabolic disturbances such as obesity, insulin resistance, type 2 dia
betes, CVD and cancer (Haro et al., 2019). 

Several studies of personalized and precision nutrition have used 
nutrigenomic approaches to design and deliver tailored dietary advice, 
with select examples (Table 1). In the NOW study, a 12-month RCT of 
140 Canadian adults, participants in the group lifestyle balance with 
nutrigenomics program received information related to their resting 
metabolism and were advised to focus on the macronutrient recom
mendation(s) highlighted in their genetic report to enhance their weight 
loss response (Horne et al., 2020). For example, an individual with the 
AA variant of FTO (rs9939609) was advised to follow a higher protein 
dietary plan to optimize weight loss. Horne et al. demonstrated that only 
participants randomized to receive the group lifestyle balance with 

Table 1 (continued ) 

Approach Study, year Methodology Main findings 

Study design, duration, 
intervention 

Population (n, age range, 
health; country) 

Tool(s) used 

et al., 2020) 
DIETFITS 

fat diet. Subset of participants 
collected stool samples 

sequencing) – collected at BL, 
3 mo, 6 mo, 9 m, 12 mo 

resulted in substantial changes 
in the microbiota at 3-mo; 14 
taxonomic changes specific to 
low-carbohydrate diet, 12 
taxonomic changes specific to 
low-fat diet. 

Metagenomics Roager et al., 2019 
(Roager et al., 
2019) 

RCT; 8 wk; in a cross-over design 
participants were randomized to 
a whole grain or refined grain 
diet 

n = 60; 20–65 y; individuals 
at risk of metabolic 
syndrome; Denmark 

Stool sample (shotgun 
sequencing-based 
metagenomics and 16S rRNA 
amplicon profiling) – collected 
at BL, 8 wk (four visits in total) 
Urine sample (non-targeted 
metabolic profiling) – collected 
4 h postprandial 
Fasting and postprandial 
venous blood samples – 
collected 30–180 min 
postprandial 

Compared with the refined 
grain diet, the whole grain diet 
did not induce major changes in 
the faecal microbiome, nor did 
it alter insulin sensitivity, but it 
did reduce body weight and 
systemic low-grade 
inflammation. 

Vangay et al., 
2018 (Vangay 
et al., 2018) 

Cross-sectional study of United 
States immigrant populations 

n = 514; >18 y; Hmong and 
Karen adults living in 
Thailand and the United 
States; this included first- and 
second-generation 
immigrants, 19 Karen adults 
sampled before and after 
immigration, and 36 U.S-born 
European American adults 

Stool sample (shotgun 
sequencing-based 
metagenomics and 16S rRNA 
amplicon profiling) – collected 
at BL 

Migration from a non-Western 
country to the U.S. is associated 
with immediate loss of gut 
microbiome diversity and 
function, in which U.S.- 
associated strains and functions 
displace native strains and 
functions. 

ApoE, Apolipoprotein E; BL, baseline; DIETFITS, Diet Intervention Examining The Factors Interacting with Treatment Success; DNAm, DNA methylation; FTO, Fat mass 
and obesity associated gene; FADS1, Fatty Acid Desaturase 1; MTHFR, Methylenetetrahydrofolate reductase; mo, month; NOW, overweight/obesity and weight 
management trial; RCT, randomized controlled trial; RT-qPCR, Quantitative reverse transcription PCR; SNP, single nucleotide polymorphism; TCF7L2, Transcription 
Factor 7 Like 2. 
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nutrigenomics program significantly reduced their total fat intake at 
12-months. Together with other nutrigenomic-based interventions 
(Hietaranta-Luoma, Tahvonen, Iso-Touru, Puolijoki, & Hopia, 2014; 
Nielsen & El-Sohemy, 2014), there has been some evidence to support 
the potential for nutrigenomic-based interventions to motivate 
long-term changes in specific nutrients, such as total fat intake. How
ever, recent reviews of RCTs highlight important gaps in the 
evidence-base for the effective integration of nutrigenomics and 
behavior science approaches (Hollands et al., 2016; Jinnette et al., 
2021). In particular, although an increasing number of studies have 
incorporated behavior change techniques, such as the theory of planned 
behavior (Horne et al., 2020), the motivators of behavior change are 
likely to be specific to the nature of the intervention and the target 
population, thus interventions targeting weight management in 
mid-aged adults may be a more amenable to nutrigenomic messaging 
compared to interventions in young adults, who may be less motivated 
to improve their health (Munt, Partridge, & Allman-Farinelli, 2017). 

Building on animal and in vitro research, an increasing number of 
postprandial human intervention studies have been conducted globally 
to examine the impact of meals and snacks on gene expression pathways 
(Jakubowicz et al., 2017; Lopez-Miranda, Williams, & Lairon, 2007; 
Ramos-Lopez et al., 2017). For example, in a recent randomized post
prandial cross-over study of 19 Australian men, Dordevic et al. investi
gated transcriptomic regulation of adipose tissue following a high-fat 
meal in men with and without metabolic syndrome (Dordevic et al., 
2021). Outcomes demonstrated increases in gene expression related to 
cellular nutrient responses in control participants following a high-fat 
meal, whereas blunted response were observed in men with metabolic 
syndrome. Specifically, in healthy males, genes related to activation of 
cellular metabolism and nutrient response pathways were up regulated, 
such as mTOR regulation via activation of MAPK1, STAT3, and TGFB3 
genes. Insights from such mechanistic studies provide new knowledge of 
potential therapeutic and precision nutrition targets to improve health. 

1.4. Nutriepigenetic approaches 

Nutrition is one of the most studied and better understood lifestyle 
factors associated with epigenetic modifications (Milagro, Mansego, De 
Miguel, & Martínez, 2013). In this context, nutriepigenetic research 
encompasses the study of the effect of foods and nutrients that may 
impact on the epigenetic landscape and cell phenotypes (Ramos-Lopez 
et al., 2017). Selected studies of personalized and precision nutrition are 
presented (Table 1), which have used nutriepigenetic approaches to 
design and deliver tailored dietary advice. 

Knowledge of the range of bioactive foods and subsequent dietary 
patterns identified as exerting epigenetic effects is growing. For 
example, low intake of folate has been associated with hypomethylation 
of the CAMKK2 gene and more instances of insulin resistance in par
ticipants with metabolic syndrome (Ramos-Lopez, Samblas, et al., 
2018). Interestingly, changes in the DNA methylation (DNAm) levels of 
the circadian BMAL1 gene were associated with the effects of a weight 
loss intervention on blood lipids levels in women (Samblas, Milagro, 
Gómez-Abellán, Martínez, & Garaulet, 2016). Similarly, adherence to a 
MedDiet was associated with changes in DNAm levels of genes related to 
inflammation in high cardiovascular risk volunteers (Arpón et al., 
2016). Besides, higher regional DNAm level at TXNIP gene was signifi
cantly associated with insulin resistance improvements by taking the 
average-protein (20%) weight-loss diet (Li et al., 2022). Regarding the 
effect of maternal diet on the methylome concerning pregnancy out
comes and newborns’ health, genome-scale analyses have revealed that 
prenatal famine exposure was related to DNAm signatures in pathways 
associated with growth and metabolism (Tobi et al., 2014). In addition, 
findings from the MANOE study showed that maternal dietary and 
supplemental intake of methyl-group donors may influence infant’s 
DNAm landscape in genes related to appetite regulation, growth and 
development, and maintenance of DNAm reactions (Pauwels et al., 

2017). 
In addition to effects on DNA, several microRNAs (miRNAs) have 

been identified as being modified by dietary intake. Several miRNAs 
implicated in the control of cellular processes such as inflammation or 
apoptosis, have been shown to be modulated by dietary polyphenols 
found in fruits, vegetables, tea, coffee, and wine (Milenkovic, Jude, & 
Morand, 2013). Furthermore, several miRNAs have been identified as 
potential biomarkers in response to different diets and foods (Garcia-
Lacarte, Mansego, Zulet, Martinez, & Milagro, 2019). For instance, 
seven circulating miRNAs related to adiposity (miR-130a-3p, 
miR-142-5p, miR-144-5p, miR-15a-5p, miR-22-3p, miR-221-3p and 
miR-29c-3p) were associated with the response to a low-fat diet inter
vention prescribed to aid weight loss (Assmann, Riezu-Boj, Milagro, & 
Martínez, 2020). Similarly, plasma miR-23a-3p expression levels posi
tively correlated with sodium intake, and negatively correlated dietary 
vitamin E, whereas the consumption of vitamin D negatively correlated 
with the expression of miR-1277-5p and miR-144-3p in healthy Euro
pean volunteers (Ferrero et al., 2021). 

The health benefits of consuming dietary bioactive compounds (such 
as genistein, sulforaphane, curcumin, resveratrol, and epigallocatechin- 
3-gallate) are thought to be mediated, at least in part, by epigenetic 
mechanisms including the regulation of histone acetyltransferases 
(HATs) and deacetylases (HDACs) activities (Vahid, Zand, 
Nosrat-Mirshekarlou, Najafi, & Hekmatdoost, 2015). Specifically, it was 
shown that the consumption of 68 g of broccoli (which is equivalent to a 
daily dietary intake of 105 mg of the HDACs inhibitor sulforaphane) 
showed hyperacetylation of histones H3 and H4 in circulating blood 
cells in healthy human volunteers (Myzak, Tong, Dashwood, Dashwood, 
& Ho, 2007). Also, in vitro experiments revealed that quercetin (a dietary 
polyphenol found in many fruits, vegetables, nuts, and red wine) exerted 
anti-inflammatory and antitumoral effects via inhibition of HATs ac
tivity (Xiao et al., 2011). Other bioactive food constituents with poten
tial HDACs inhibitory activities (a promising therapeutic approach in 
the clinical setting) include short chain fatty acids, isoflavones, indoles, 
organosulfur/organoselenium agents, and sesquiterpene lactones (Kim 
et al., 2016). 

Interestingly, various nutrients influence telomere length (TL) 
through mechanisms reflecting potential roles in cellular functions 
including inflammation, oxidative stress, DNA integrity, and telomerase 
activity (Paul, 2011). For example, sugar-sweetened soda consumption 
was associated with shorter leukocyte TL in a nationally representative 
sample of American healthy adults (Leung et al., 2014). Within the 
Multi-Ethnic Study of Atherosclerosis (including white, black, and His
panic adults), processed meat intake was associated with shorter TL 
(Nettleton, Diez-Roux, Jenny, Fitzpatrick, & Jacobs, 2008). Meanwhile, 
a prudent dietary pattern (characterized by high intake of whole grains, 
seafood, legumes, vegetables and seaweed) was associated with longer 
leukocyte TL in middle-aged and older Korean adults from a 
population-based cohort (Lee, Jun, Yoon, Shin, & Baik, 2015). More
over, findings from the PREDIMED-NAVARRA trial showed that better 
adherence to MedDiet was associated with longer basal telomeres in 
women, whereas the opposite was observed in men (García-Calzón et al., 
2016). 

1.5. Metabolomic approaches 

Metabolomic research implements the profiling of metabolites in 
biofluids, cells and tissues and is routinely applied as a tool for 
biomarker description and target discovery (Johnson, Ivanisevic, & 
Siuzdak, 2016). Advances in analytical technologies and informatics 
have led to the rapid uptake of metabolomic research to investigate 
physiological conditions and chronic diseases (Mastrangelo & Barbas, 
2017). In particular, application of metabolomics approaches has shown 
promise for improving the accuracy of dietary assessment through the 
identification of biomarkers of food intake, and identifying metabolites 
and metabolic signatures that can serve as targets for interventions 
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(Brennan & de Roos, 2021). Two distinct metabolomic methodologies 
have been implemented: untargeted metabolomics, an intended 
comprehensive screening of all the measurable metabolites in a sample, 
including chemical unknowns); and targeted metabolomics, the mea
surement of chemically described and biochemically characterized 
metabolites (Johnson et al., 2016). 

In recent compilations of future perspectives in “omics” research, 
three opportunities for metabolomics were identified to improve the 
accuracy of dietary assessment in the field of nutritional epidemiology: 
1) determination of food intake based on levels of biomarkers and 
calibration equations from feeding studies, 2) classification of in
dividuals into dietary patterns based on urinary metabolic profiles, and 
3) application of metabolome wide–association studies (Brennan & de 
Roos, 2021; Brennan & Hu, 2019). Many of these endeavors require 
rapid and effective data integration. For example, in a recent guide to 
integration of microbiome and dietary pattern data, Choi et al. recom
mended using methods currently applied to microbiome datasets, such 
as dietary tree-of-foods and data adjustment for compositionality, to 
better incorporate dietary patterns research into existing microbiome 
analysis pipelines (Choi, Hoops, Thoma, & Johnson, 2022). Further
more, research on dietary metabolites has traditionally focused on single 
metabolites, such as 2-hydroxy-3-methylbutyric acid as a candidate 
biomarker of habitual alcohol (Loftfield et al., 2021). However, recent 
research has identified combinations of metabolites, known as meta
bolic signatures that are associated with specific dietary exposures and 
disease outcomes (E. Smith et al., 2022). As proposed by Smith et al., if 
metabolic signatures can be used to identify population groups at risk on 
chronic disease, a single plasma sample could be sufficient for esti
mating disease risk in clinical settings, without the need to self-report 
dietary intake (E. Smith et al., 2022). 

State-of-the-art studies have used metabolomic approaches to un
derstand individualized responses to dietary intake (Table 1). One such 
example is the PREDICT 1 study, led by Berry et al., which examined the 
postprandial metabolic responses to sequential mixed-nutrient dietary 
challenges in 1002 healthy UK adults aged 18–65 years (Berry et al., 
2020). Stool samples, dry blood spot cards and continuous glucose 
monitoring were used to determining the extent of influence of the gut 
microbiome on postprandial lipemia and glycemia. Outcomes from this 
research showed that the gut microbiome had a greater influence (7.1% 
of variance) than meal macronutrients (3.6%) for postprandial lipemia, 
but not for postprandial glycemia (6.0% and 15.4%, respectively). In 
contrast, the heritability of postprandial traits was modest, highlighting 
the importance of meal composition and context, such as meal timing, 
exercise, sleep and circadian rhythm, as core determinants of post
prandial metabolism (Berry et al., 2020). Integrative precision nutrition 
approaches thus have significant potential for combining physiological, 
behavioral and contextual factors into targeted dietary advice and 
support (Ramos-Lopez, Milton-Laskibar, Martínez, 2021). 

One of the first and most comprehensive studies of individual vari
ability, the DIETFITS study, was a 12-month RCT that aimed to identify 
whether individual differences in insulin secretion explained inter- 
individual variation in weight loss (Ebbeling, Leidig, Feldman, Love
sky, & Ludwig, 2007). In this study, average weight loss was comparable 
between groups, yet considerable variations were observed within 
groups. In a sub-study of 49 18–50 year old US adults from the DIETFITS 
study, Fragiadakis et al. aimed to extend this research by determining if 
baseline microbiota composition or diversity was associated with 
weight-loss success (Fragiadakis et al., 2020). Findings from this study 
indicated that while baseline microbiota composition was not predictive 
of weight loss, each diet resulted in substantial changes in the micro
biota 3 months after the start of the intervention, most notably due to 
changes specific to the healthy low-carbohydrate diet, although these 
changes were not sustained at 12-months (Fragiadakis et al., 2020). The 
authors speculate that this could be the result of a microbiome-based 
“memory” of obesity, in which there is resilience of the microbiota to 
dietary and host physiological change and presence of a homeostatic 

corrective force on the microbial community to return to a 
long-established state (Thaiss et al., 2016). This microbial resistance 
could have important implications for precision nutrition approaches 
that aim to achieve sustained changes in diet, gut microbiota and health 
in individuals with obesity, and warrants further investigation (Thaiss 
et al., 2016). 

1.6. Metagenomic approaches 

Metagenomics is defined as the comprehensive study of microbial 
and host genetic material (DNA and RNA) in samples from patients 
without prior need for culturing (Chiu & Miller, 2019). The human 
gastrointestinal tract is estimated to harbor ~1013 microorganisms, 
referred to as the gut microbiome (Bäckhed, Ley, Sonnenburg, Peterson, 
& Gordon, 2005). The gut microbiome has a vast genetic potential to 
contribute to host physiology, and has been increasingly studied in 
relation its impact on biological pathways that regulate immunity, en
ergy homeostasis and its potential to explain human variability in di
etary response (Mills, Stanton, Lane, Smith, & Ross, 2019). As a result, 
advances in next generation sequencing have allowed for shotgun 
metagenomics, which is low-cost high-throughput sequencing that can 
analyze all genomes within an ecosystem sample, and marker gene 
metagenomics, which describes the taxa within a specific community by 
sequencing conserved marker genes, without the need to cultivate the 
clonal cultures (Oulas et al., 2015). 

Landmark studies have shown the potential for metagenomic ap
proaches to be utilized at a population-level. This includes the Belgium 
Flemish Gut Flora Project (FGFP), which has generated one of the largest 
and best characterized fecal microbiota databases currently available 
(Falony et al., 2016). As part of the project, Falony et al. have investi
gated the extent to which anthropometrics, health, lifestyle, bowel 
habits, medication, and diet explained variation in the gut microbiome, 
and its association with health outcomes. With fiber consumption 
identified as the strongest dietary influence on gut microbiome (Falony 
et al., 2016), many subsequent studies have built upon this research 
(Hughes et al., 2020), which would not be possible without advances in 
metagenomic tools. 

As shown in the select examples (Table 1), metabolomic approaches 
have been applied to understand individualized responses to dietary 
intake. In 8-week RCT of 60 Danish adults at risk of metabolic syndrome, 
shotgun sequencing-based metagenomics was employed to investigate 
whether a whole grain diet altered the gut microbiome and insulin 
sensitivity, as well as biomarkers of metabolic health and gut func
tionality (Roager et al., 2019). Contrary to the author’s hypothesis, the 
whole grain diet did not induce major changes in the fecal microbiome 
compared with the refined grain diet. However, the 
metagenomics-based examination of the microbiome response at both 
species and functional levels did identify some minor changes in the 
microbiome. In particular, the whole grain diet induced a reduction in 
E. ramosum, which has been reported to promote obesity in high-fat mice 
models, thus potentially contributing to the observed reduction in 
weight and low-grade inflammation observed in the trial. The combi
nation of metagenomics with urine and postprandial blood sampling in 
this study showcases the advantage of a multi-omics perspective for the 
comprehensive study of biological mechanisms of health and disease. 

The use of metagenomics tools has considerable potential for use in 
population-based studies, which explains why an increasing number of 
studies have collected fecal samples. In a pioneering study, Vangay et al. 
collected stool, dietary recalls, and anthropometrics from 514 Hmong 
and Karen individuals living in Thailand and the U.S., including first- 
and second-generation immigrants and 19 Karen individuals sampled 
before and after immigration, as well as from 36 US-born European 
American individuals (Vangay et al., 2018). Using 16S and deep shotgun 
metagenomic DNA sequencing, the authors found that migration to the 
US was associated with rapid displacement of native gut microbiome 
diversity and function by US-associated strains and functions. 
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Subsequent studies have since used similar metagenomic approaches in 
longitudinal studies, including a study of 144 Chinese adults, where a 
healthy dietary pattern was associated with greater diversity of micro
bial gene families and metabolic pathways, as well as altered symbiotic 
functions relevant to human health (Yu et al., 2021). These studies 
provide important insights into the racial considerations when imple
menting precision nutrition approaches in different population groups, 
with further research needed to better understand how these align with 
sociocultural influences on diet. 

1.7. Integrative precision nutrition: big data and machine learning 

The evolution of “omics” technologies and emerging big data ana
lyses has deepened the understanding and characterization of nutrition- 
related chronic diseases by applying ML and artificial intelligence 
methods. ML refers to the ability of algorithms and other categorization/ 
clustering strategies to produce inferences or find patterns from statis
tical analysis of very large datasets, which is expressed as the likelihood 
of a relationship between variables (Baştanlar & Ozuysal, 2014). In 
other words, ML provides techniques that can automatically build a 
computational model by processing the available data and maximizing a 
problem dependent performance criterion, which can be used to make 
predictions or classifications for advanced exploratory data analysis 
(Baştanlar & Ozuysal, 2014). Thus, ML encompasses linear and logistic 
regression, data clustering, artificial neural networks, association rule 
learning, feature engineering and dimensionality reduction, deep 
learning and decision tree testing, principal component analysis, and 
topological data assessment (DeGregory et al., 2018). 

Here, we review machine learning methods that predict and/or 
classify such as linear and logistic regression, artificial neural networks, 
deep learning and decision tree analysis. We also review methods that 
describe and characterize data such as cluster analysis, principal 
component analysis, network science and topological data analysis. 

These approaches are able to capture large and complex matrices of 
data, incorporating potential interactions and identifying both linear 
and non-linear associations (Vilne et al., 2022). Generally, the perfor
mance of a ML model in various application areas depends on the 
amount, quality, nature, and characteristics of the data, the complexity 
and form of the relationships between variables and the target outcome, 
as well as the application of suitable bioinformatics instruments (Sarker, 
2021). 

Extracting valuable knowledge from “omics” data remains a chal
lenge in bioinformatics, often needing more innovative methods for 
efficient handlings and effective results (Khorraminezhad, Leclercq, 
Droit, Bilodeau, & Rudkowska, 2020). In this regards, ML play a major 
role in the integration and interpretation of multi-“omics” techniques in 
nutrition research (including genomics, epigenomics, transcriptomics, 
proteomics, metabolomics, and metagenomics) since they can be used 
for computational modeling, data mining, sample clustering, and clas
sification in response to dietary intake (Khorraminezhad et al., 2020). 
The combination of these tools can be translated into practical clinical 
nutrition applications such as decision support and diet optimization 
schemes (Limketkai, Mauldin, Manitius, Jalilian, & Salonen, 2021). 
Fig. 2 provides an overview of integrative precision nutrition, where 
quantitative nutri-indices/scores and decision trees/algorithms 
designed to categorize and cluster interventions are devised. ML could 
facilitate the analysis of many complex features, contributing to the 
development of high-performance precision nutrition recommendations 
(Limketkai et al., 2021). 

Indeed, one common application of precision nutrition is the creation 
of ML algorithms. For instance, an integrative approach with ML algo
rithms was performed to predict obesity using genetic (402,793 SNPs), 
epigenetic (415,202 DNAm sites), and environmental data (397 dietary 
and lifestyle factors) and exploring gene-gene and gene-diet interactions 
(Lee et al., 2022). Also, a ML model based on routine, quantitative, and 
easily measured variables (such as age, systolic blood pressure, 

blood/urine tests and dietary intake values) was able to detect the 
presence and extent of subclinical atherosclerosis in young, asymp
tomatic individuals (Sánchez-Cabo et al., 2020). Of note, ML techniques 
(Random Forest and Gradient Boosting Machine models) were employed 
to predict the BMI from a wide set of 190 multidomain variables 
including age, sex, genetic polymorphisms, lifestyle, socio-economic 
position, diet, exercise, and gestation features in children (Marcos-Pa
sero et al., 2021). As detailed in Table 1, another example of ML ap
plications includes the findings from the PREDICT 1 clinical trial, 
reporting individual variations in postprandial triglyceride and glucose 
responses to standardized meals using genetic, metabolic, microbiome, 
and meal context data, which could help to customize nutrition rec
ommendations for cardiometabolic health (Berry et al., 2020). Likewise, 
a ML algorithm that integrated blood markers, dietary habits, anthro
pometrics, physical activity, and gut microbiota composition was fitted 
to accurately predict individual glycemic responses to real-life meals 
(Zeevi et al., 2015). 

The application of big data and ML has significant potential to 
advance nutritional epidemiology. Specifically, as detailed earlier, ML 
can be used to improve the precision and validity of dietary measure
ments and offer more tools to model the complexity of diet and its 
relationship with diseases (Morgenstern, Rosella, Costa, de Souza, & 
Anderson, 2021). Interestingly, findings from the ATTICA study 
revealed that ML techniques (k-nearest-neighbor’s algorithm and 
random-forests decision tree) were superior to linear regression models 
in evaluating the association between dietary patterns and 10-year 
cardiometabolic risk, leading to more accurate disease-risk evaluation 
(Panaretos et al., 2018). Such advances in the application of ML and 
other artificial intelligence approximates to nutritional epidemiology 
have been encouraged by concurrent developments in dietary moni
toring. These include the use of mobile applications (i.e., food photog
raphy and related artificial intelligence processing), wearable and 
handheld sensors capable of detecting temporal variations in intake of 
foods and supplements, and chemical sensors to estimate the macro
nutrient composition of diets and specific meals (Mortazavi & 
Gutierrez-Osuna, 2021). In fact, digital advances have the potential to 
revolutionize dietary behavior change research by providing timely 
(previously unavailable) dietary information. This information can then 
be used in just-in-time adaptive dietary interventions, paving the way 

Fig. 2. Integrative precision nutrition: use of biomarkers from OMICS tech
nologies for data processing and clinical applications. 
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for the design of more effective precision nutrition strategies that use ML 
to tailor and adapt advice and support at scale (Sempionatto, Montiel, 
Vargas, Teymourian, & Wang, 2021). 

In addition to the aforementioned applications, another important 
tool in ML and big data analysis is the use of biomarkers. Potential ap
plications of biomarkers include to quantify dietary intake; analyze 
physiopathological responses to food components or diets; characterize 
therapeutic targets; identify individuals with specific nutritional de
ficiencies; provide information on inter-individual variations in 
response to diets; and to help design personalized nutritional recom
mendations for particular metabolic phenotypes to achieve optimal 
health (Picó, Serra, Rodríguez, Keijer, & Palou, 2019). 

Overall, ML modeling in precision nutrition may contribute to a 
greater understanding of human health and disease, individual risk 
prediction, case triage diagnosis and interpretation, and personalized 
patient prognosis and management. Nevertheless, some of the most 
important challenges include the lack of data availability with large 
enough sample sizes to ensure high reliability and reproducibility, and 
the interpretability and practical application of the ML approaches to 
bedside settings (Habehh & Gohel, 2021). The involvement of health
care professionals in the development, implementation, and testing of 
ML-based methods may help to increase the adoption rates of these 
innovative approaches as well as improve the clinical applicability and 
real-world impact of the results on health monitoring procedures 
(Habehh & Gohel, 2021). 

1.8. Challenges for the development of precision nutrition 

While the opportunities for integrative precision nutrition are vast, 
the challenges of developing and implementing such approaches require 
consideration. The ethical, legal and social issues of using genetic in
formation, and other highly sensitive personal information, has been 
reviewed within the content of human rights requirements in and 
outside the EU (Slokenberga et al., 2019), and specifically within the 
context of precision nutrition (Kohlmeier et al., 2016). Although the 
legal framework surrounding genetic testing remains complex, and 
country and region-specific (Slokenberga et al., 2019), there is an 
increasing understanding of the importance of ethical and social issues. 
Above all else, the responsible handling of genetic information is crit
ical, as results may have far-reaching implications for the health and 
legal status of the consumer and their family. As a result, consumers 
undergoing genetic testing must provide informed consent, where they 
are aware of any benefits and risks associated with such testing. How
ever, consumer protection goes beyond personal approval, as the 
responsible handling of genetic information should also consider the 
quality of these tests. Quality control includes ensuring the databases 
used and personalized advice provided by laboratories, companies, and 
health care professionals are appropriate. Upskilling of non-genetic 
healthcare professionals has been identified as an unmet need in 
recent years, with an increasing number of training resources now being 
developed and tested, which is critical to meet the rise in commercial
ization of genetic testing (Talwar, Tseng, Foster, Xu, & Chen, 2016). 

Many frameworks have been developed, which can help navigate the 
challenges of precision nutrition. One such example is a precision public 
health ethics background that aims to ensure the benefit of precision 
approaches based on advances in genomics research outweigh any 
possible public health risks to individuals, families, and vulnerable 
members of the population (Juengst & Van Rie, 2020). Within this 
framework, four intersectional elements of precision public health ethics 
are proposed: community health priority, shared authority, least intru
sive data use and proactive transparency. As such, a key principle of this 
endeavor is a commitment to confidentiality of information, responsible 
governance of data, and the consent of individuals or groups involved 
(San-Cristobal, Milagro, & Martínez, 2013). Future research should 
continue to strengthen ethical, legal and social solutions for the inte
gration of genetic, and other sensitive biological, cultural or behavioral 

information, into precision nutrition approaches for a personalized 
attention (Ferguson et al., 2016). 

2. Conclusions 

As outlined in this document, personalized and precision nutrition 
approaches are being increasingly adopted in nutrition research. While 
closely related terms, there are distinct differences. Personalized nutri
tion encompasses the application of “omics” technologies such as 
nutrigenomics, metagenomics, and metabolomics to the prescription of 
individualized diets for health and wellbeing. Information used in the 
prescription of such advice is predominantly fixed and therefore doesn’t 
change over time. In contrast, precision nutrition adopts an integrative, 
dynamic and holistic approach to developing comprehensive recom
mendations for individuals and population subgroup. Precision nutrition 
can involve the analysis of complex gene-environment interactions and 
deep phenotyping, the screening and integration of behavioral and so
ciocultural factors, health characteristics, and perinatal feeding infor
mation. However, precision nutrition combines such information at 
scale, thus requiring the use of bioinformatics, ML and artificial intel
ligence approaches for integrative purposes. 

This review provides an overview of current trends in “omics” 
technologies that are likely to underpin the future success of integrative 
precision nutrition approaches. As outlined in this review, inter- 
individual variations in genetics only partially explain the heterogene
ity in the response to a given diet. Over the last two decades, the study of 
the gut microbiota and metabolomics have increased exponentially, 
creating a better understanding of metabolic pathways through which 
dietary intakes may impact on health and disease. These emerging fields 
of research require the use of high-throughput technologies and deep 
phenotyping, which provide physiological and genetic insights into the 
metabolic pathways of bioactive foods and nutrients. In turn, such in
sights will help inform the optimal design of precision dietary in
terventions to improve and maintain health in individuals. New frontiers 
in big data and machine learning will undoubtedly pave the way for 
delivering integrated precision nutrition, where multi-omics approaches 
can be combined with lifestyle and behavioral determinants of diet and 
health to improve population diets at scale. Indeed, genotypical and 
phenotypical data as well as perinatal, clinical history, and de
mographic/socioeconomic determinants need to be accorded. 

The outcomes of this review will assist with understanding trends in 
the design and application of precision nutrition approaches for use in 
research, healthcare and industry. The global application of precision 
nutrition requires understanding of the population health, political will 
and technological and digital landscape of the region and country in 
question, prior to implementation of such approaches. Moreover, multi- 
disciplinary collaborations between researchers, health care pro
fessionals and industry are likely to become even more important to aid 
the generation, interpretation and implementation of integrative preci
sion nutrition data. 
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Herforth, A., Arimond, M., Álvarez-Sánchez, C., Coates, J., Christianson, K., & 
Muehlhoff, E. (2019). A global review of food-based dietary guidelines. Advances in 
Nutrition, 10(4), 590–605. https://doi.org/10.1093/advances/nmy130 

Hietaranta-Luoma, H. L., Tahvonen, R., Iso-Touru, T., Puolijoki, H., & Hopia, A. (2014). 
An intervention study of individual, apoE genotype-based dietary and physical- 
activity advice: Impact on health behavior. Journal of Nutrigenetics and Nutrigenomics, 
7(3), 161–174. https://doi.org/10.1159/000371743 

Hollands, G. J., French, D. P., Griffin, S. J., Prevost, A. T., Sutton, S., King, S., et al. 
(2016). The impact of communicating genetic risks of disease on risk-reducing 
health behaviour: Systematic review with meta-analysis. BMJ, 352. https://doi.org/ 
10.1136/bmj.i1102 

Horne, J., Gilliland, J., O’Connor, C., Seabrook, J., & Madill, J. (2020). Enhanced long- 
term dietary change and adherence in a nutrigenomics-guided lifestyle intervention 
compared to a population-based (GLB/DPP) lifestyle intervention for weight 
management: Results from the NOW randomised controlled trial. BMJ Nutrition, 
Prevention & Health. https://doi.org/10.1136/bmjnph-2020-000073. bmjnph-2020- 
000073. 

Hughes, D. A., Bacigalupe, R., Wang, J., Rühlemann, M. C., Tito, R. Y., Falony, G., … 
Raes, J. (2020). Genome-wide associations of human gut microbiome variation and 
implications for causal inference analyses. Nature microbiology, 5(9), 1079–1087. 
https://doi.org/10.1038/s41564-020-0743-8 

Jakubowicz, D., Wainstein, J., Landau, Z., Raz, I., Ahren, B., Chapnik, N., … Froy, O. 
(2017). Influences of breakfast on clock gene expression and postprandial glycemia 
in healthy individuals and individuals with diabetes: A randomized clinical trial. 
Diabetes Care, 40(11), 1573–1579. https://doi.org/10.2337/dc16-2753 

Jinnette, R., Narita, A., Manning, B., McNaughton, S. A., Mathers, J. C., & 
Livingstone, K. M. (2021). Does personalized nutrition advice improve dietary intake 
in healthy adults? A systematic review of randomized controlled trials. Advances in 
Nutrition, 12(3), 657–669. https://doi.org/10.1093/advances/nmaa144 

K.M. Livingstone et al.                                                                                                                                                                                                                         

https://doi.org/10.1016/S0140-6736(19)30041-8
https://doi.org/10.1007/s13105-017-0552-6
https://doi.org/10.1007/s13105-017-0552-6
https://doi.org/10.1111/jcmm.14920
https://doi.org/10.1126/science.1104816
https://doi.org/10.1126/science.1104816
https://doi.org/10.1007/978-1-62703-748-8_7
https://doi.org/10.1007/978-1-62703-748-8_7
https://doi.org/10.1038/s41591-020-0934-0
https://doi.org/10.1016/s0140-6736(10)60961-0
https://doi.org/10.1093/ajcn/nqaa366
https://doi.org/10.1093/ajcn/nqaa366
https://doi.org/10.1002/mnfr.201701064
https://doi.org/10.1080/07315724.2019.1685332
https://doi.org/10.3389/fpubh.2022.854525
https://doi.org/10.3389/fpubh.2022.854525
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4261071/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4261071/
https://doi.org/10.1093/ije/dyw186
https://doi.org/10.1093/ije/dyw186
https://doi.org/10.1038/s41576-019-0113-7
https://doi.org/10.1093/jn/nxac033
https://doi.org/10.1093/jn/nxac033
https://doi.org/10.1111/obr.12667
https://doi.org/10.1111/obr.12667
https://doi.org/10.1016/j.clnu.2020.08.024
https://doi.org/10.1016/j.clnu.2020.08.024
https://doi.org/10.3390/metabo12010087
https://doi.org/10.3390/metabo12010087
https://doi.org/10.1001/jama.297.19.2092
https://doi.org/10.3389/fendo.2012.00029
https://doi.org/10.3389/fendo.2012.00029
https://doi.org/10.1038/ng826
https://doi.org/10.1126/science.aad3503
https://doi.org/10.1159/000327772
https://www.karger.com/DOI/10.1159/000445350
https://www.karger.com/DOI/10.1159/000445350
https://doi.org/10.3389/fphar.2020.619200
https://doi.org/10.1093/ajcn/nqaa046
https://doi.org/10.1016/j.clnu.2016.03.013
https://doi.org/10.1016/j.clnu.2016.03.013
https://doi.org/10.3390/cells8121548
https://doi.org/10.3945/jn.115.218354
https://doi.org/10.3945/jn.115.218354
https://doi.org/10.2174/1389202922666210705124359
https://www.mdpi.com/1422-0067/20/6/1386
https://doi.org/10.1093/advances/nmy130
https://doi.org/10.1159/000371743
https://doi.org/10.1136/bmj.i1102
https://doi.org/10.1136/bmj.i1102
https://doi.org/10.1136/bmjnph-2020-000073
https://doi.org/10.1038/s41564-020-0743-8
https://doi.org/10.2337/dc16-2753
https://doi.org/10.1093/advances/nmaa144


Trends in Food Science & Technology 128 (2022) 253–264

263

Johnson, C. H., Ivanisevic, J., & Siuzdak, G. (2016). Metabolomics: Beyond biomarkers 
and towards mechanisms. Nature Reviews Molecular Cell Biology, 17(7), 451–459. 
https://doi.org/10.1038/nrm.2016.25 

Juengst, E. T., & Van Rie, A. (2020). Transparency, trust, and community welfare: 
Towards a precision public health ethics framework for the genomics era. Genome 
Medicine, 12, 98. https://doi.org/10.1186/s13073-020-00800-y 

Kalmpourtzidou, A., Eilander, A., & Talsma, E. F. (2020). Global vegetable intake and 
supply compared to recommendations: A systematic review. Nutrients, 12(6), 1558. 
Retrieved from https://www.mdpi.com/2072-6643/12/6/1558. 

Khorraminezhad, L., Leclercq, M., Droit, A., Bilodeau, J. F., & Rudkowska, I. (2020). 
Statistical and machine-learning analyses in nutritional genomics studies. Nutrients, 
12(10), 3140. https://doi.org/10.3390/nu12103140 
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(2016). Guide and position of the international society of nutrigenetics/ 
nutrigenomics on personalized nutrition: Part 2 - ethics, challenges and endeavors of 
precision nutrition. Lifestyle Genomics, 9(1), 28–46. https://doi.org/10.1159/ 
000446347 

Lee, Y. C., Christensen, J. J., Parnell, L. D., Smith, C. E., Shao, J., McKeown, N. M., et al. 
(2022). Using machine learning to predict obesity based on genome-wide and 
epigenome-wide gene-gene and gene-diet interactions. Frontiers in Genetics, 12, 
Article 783845. https://doi.org/10.3389/fgene.2021.783845 

Lee, J. Y., Jun, N. R., Yoon, D., Shin, C., & Baik, I. (2015). Association between dietary 
patterns in the remote past and telomere length. European Journal of Clinical 
Nutrition, 69(9), 1048–1052. https://doi.org/10.1038/ejcn.2015.58 

Leung, C. W., Laraia, B. A., Needham, B. L., Rehkopf, D. H., Adler, N. E., Lin, J., et al. 
(2014). Soda and cell aging: Associations between sugar-sweetened beverage 
consumption and leukocyte telomere length in healthy adults from the national 
health and nutrition examination surveys. American Journal of Public Health, 104 
(12), 2425–2431. https://doi.org/10.2105/AJPH.2014.302151 

Limketkai, B. N., Mauldin, K., Manitius, N., Jalilian, L., & Salonen, B. R. (2021). The age 
of artificial intelligence: Use of digital technology in clinical nutrition. Current 
surgery reports, 9(7), 20. https://doi.org/10.1007/s40137-021-00297-3 

Li, X., Shao, X., Bazzano, L. A., Xue, Q., Koseva, B. S., Grundberg, E., et al. (2022). Blood 
DNA methylation at TXNIP and glycemic changes in response to weight-loss diet 
interventions: The POUNDS lost trial. International Journal of Obesity, 46(6), 
1122–1127. https://doi.org/10.1038/s41366-022-01084-5, 2005. 

Livingstone, K. M., Brayner, B., Celis-Morales, C., Ward, J., Mathers, J. C., & Bowe, S. J. 
(2022). Dietary patterns, genetic risk, and incidence of obesity: Application of 
reduced rank regression in 11,735 adults from the UK Biobank study. Preventive 
Medicine, 158, Article 107035. https://doi.org/10.1016/j.ypmed.2022.107035 

Livingstone, K. M., Celis-Morales, C., Navas-Carretero, S., San-Cristobal, R., Forster, H., 
Woolhead, C., & on behalf of the Food4Me, S. (2021). Personalised nutrition advice 
reduces intake of discretionary foods and beverages: Findings from the Food4Me 
randomised controlled trial. International Journal of Behavioral Nutrition and Physical 
Activity, 18(1), 70. https://doi.org/10.1186/s12966-021-01136-5 

Livingstone, K. M., Celis-Morales, C., Navas-Carretero, S., San-Cristobal, R., 
Macready, A. L., Fallaize, R., et al. (2016). Effect of an internet-based, personalized 
nutrition randomized trial on dietary changes associated with the mediterranean 
diet: The Food4Me study. American Journal of Clinical Nutrition. https://doi.org/ 
10.3945/ajcn.115.129049 

Loftfield, E., Stepien, M., Viallon, V., Trijsburg, L., Rothwell, J. A., Robinot, N., et al. 
(2021). Novel biomarkers of habitual alcohol intake and associations with risk of 
pancreatic and liver cancers and liver disease mortality. Journal of the National 
Cancer Institute: Journal of the National Cancer Institute, 113(11), 1542–1550. https:// 
doi.org/10.1093/jnci/djab078 

Lopez-Miranda, J., Williams, C., & Lairon, D. (2007). Dietary, physiological, genetic and 
pathological influences on postprandial lipid metabolism. British Journal of Nutrition, 
98(3), 458–473. https://doi.org/10.1017/S000711450774268X 

de Luis, D. A., Izaola, O., Primo, D., & Aller, R. (2018). Role of rs670 variant of APOA1 
gene on lipid profile, insulin resistance and adipokine levels in obese subjects after 
weight loss with a dietary intervention. Diabetes Research and Clinical Practice, 142, 
139–145. https://doi.org/10.1016/j.diabres.2018.05.040 

Marcos-Pasero, H., Colmenarejo, G., Aguilar-Aguilar, E., Ramírez de Molina, A., 
Reglero, G., & Loria-Kohen, V. (2021). Ranking of a wide multidomain set of 
predictor variables of children obesity by machine learning variable importance 
techniques. Scientific Reports, 11(1), 1910. https://doi.org/10.1038/s41598-021- 
81205-8 
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