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Pro-biomics: Omics Technologies To Unravel the
Role of Probiotics in Health and Disease

Despoina Eugenia Kiousi, Marina Rathosi, Margaritis Tsifintaris, Pelagia Chondrou, and Alex Galanis
Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece

The comprehensive characterization of probiotic action has flourished during the past few decades, alongside the evolution of high-throughput,
multiomics platforms. The integration of these platforms into probiotic animal and human studies has provided valuable insights into the holistic
effects of probiotic supplementation on intestinal and extraintestinal diseases. Indeed, these methodologies have informed about global molecular
changes induced in the host and residing commensals at multiple levels, providing a bulk of metagenomic, transcriptomic, proteomic, and
metabolomic data. The meaningful interpretation of generated data remains a challenge; however, the maturation of the field of systems biology
and artificial intelligence has supported analysis of results. In this review article, we present current literature on the use of multiomics approaches in
probiotic studies, we discuss current trends in probiotic research, and examine the possibility of tailor-made probiotic supplementation. Lastly, we
delve deeper into newer technologies that have been developed in the last few years, such as single-cell multiomics analyses, and provide future

directions for the maximization of probiotic efficacy. Adv Nutr 2021,00:1-19.
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Introduction

Probiotics are defined as “live microorganisms that when
administered in adequate amounts confer a health benefit on
the host” (1). plethora of studies has revealed the positive
impact of probiotics on blood cholesterol concentrations
(2), inflammation-related disorders (3), metabolic disorders
such as obesity and diabetes (4), and even cancer (5). To
evaluate the effectiveness of probiotics and elucidate their
mechanisms of action, several preclinical and clinical models
are commonly employed. For example, models of intestinal
or systemic inflammation are used to study inflammation-
related pathogenesis (6), models of high-fat diets have been
developed to study metabolic disorders (7), and cancer
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models are used for the study of oncogenesis (8). Moreover,
clinical trials that recruit healthy volunteers or patients, with
the aim of correlating clinical outcomes to specific molecular
changes caused by the probiotic supplementation, are also
performed (9).

The evolution of high-throughput platforms and the
development of robust bioinformatic tools have boosted
our understanding of probiotic action, promoted the in-
depth study of their biology and probiotic-induced cellular
responses, and further validated their health-promoting
properties. Genomic analyses have aided in the mining of
probiotic features, such as acid tolerance or bacteriocin pro-
duction (10), whereas metagenomic studies have contributed
to the elucidation of probiotic-microbiota interactions (11).
Transcriptomic, proteomic, and metabolomic platforms have
supported the profiling of host-microbe crosstalk and have
contextualized the holistic effects induced by the supplemen-
tation (12). Furthermore, recent comparative studies firmly
support the species-, disease-, sex-, and host-specific probi-
otic actions, underlining the need for targeted interventions
(13). The purpose of this review is to weigh the use of multi-
omics high-throughput platforms in preclinical and clinical
studies, investigating the effects of probiotic supplementation
on common pathophysiological conditions, such as immune
and metabolic disorders. Furthermore, we critically discuss
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current trends in probiotic research, newly developed tech-
nologies, such as single-cell multiomics analysis, and provide
future directions for the implementation of personalized
probiotic interventions. To this aim, a comprehensive search
of current literature on the PubMed database, using the term
“probiotics” combined with “transcriptomics,” “proteomics,”
“metabolomics,” “metagenomics,” “comparative genomics,”
and “microbiome” was performed. Filters were applied to
restrict results to animal and clinical studies. Finally, only
articles published in English were included.

Current Status of Knowledge

Transcriptomic and proteomic studies of the
immunomodulatory properties of probiotic bacteria
Characterization of the immunomodulatory effects of probi-
otic bacteria at the transcriptome level is performed either by
RNA-sequencing (RNA-Seq) or microarray gene expression
platforms. Accordingly, protein chips with antibodies, other
proteins, or nucleic acids that bind specifically to protein
targets are used to evaluate probiotic-induced changes at the
proteome level. Animal studies are usually conducted on
models of chemically induced colitis. The animals are treated
with dinitrobenzene sulfonic acid (DNBS) or dextran sodium
sulfate (DSS), which provoke strong inflammatory responses
or induce colonic cell death, ultimately leading to the
development of colitis (14). Preclinical and clinical studies
employing these methodologies are listed in Table 1. For
example, administration of Lactobacillus rhamnosus CNCM
1-3690 to DNBS-induced chronic microinflammation mice,
induced downregulation of systemic inflammation markers
IL-6, IFN-B, and IFN-y and restored gut permeability
(15). Moreover, transcriptomic analysis with microarrays,
targeting the sum of known mouse transcripts, demonstrated
that the probiotic strain blocked the activation of the
canonical NF-« B pathway and upregulated the expression of
TNF receptor associated factor (TRAF) interaction protein
with a forkhead-associated domain (TIFA). Validation of
the microarray analysis for 7 representative genes was
performed by qRT-PCR (15). In another study, colitis was
induced by DSS in C57BL/6 mice that were also injected
with the carcinogen azoxymethane (16). The simultane-
ous supplementation with Bifico, a commercially available
probiotic cocktail, comprised of Bifidobacterium longum, L.
acidophilus, and Enterococcus faecalis, managed to preserve
the intestinal architecture (crypt morphology, infiltration
of immunological populations). Notably, a reduction of
tumor formation was also recorded. To analyze further the
clinical outcomes, and elucidate the molecular pathways
involved, global transcriptome analysis with cDNA microar-
rays, was performed. Two-dimensional hierarchical cluster-
ing revealed that 300 genes were differentially expressed;
166 genes were upregulated, and 134 genes were downreg-
ulated in the probiotic-treated group. The interpretation of
the bulk of data derived from this analysis was performed by
the Database for Annotation, Visualization, and Integrated
Discovery (DAVID). It was found that Bifico influenced the
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expression of transcripts involved in tight junctions and
cytokine-cytokine receptor interaction (16). Similarly, to
investigate the global changes in the transcriptomic profile
of BALB/c mice orally inoculated with Bifidobacterium
bifidum PRL2010, the 90k CombiMatrix array was employed
(17). It was demonstrated that specific genes coding for
proinflammatory proteins, such as kallikrein B, plasma 1
protein (KlkbI), were downregulated in the probiotic group,
whereas genes encoding tight junction proteins, including
catenin «-like 1 (Ctnnal) and claudin 10 (Cldnl0), were
upregulated. Mechanistic studies in human colon adeno-
carcinoma cell lines revealed that these effects were likely
attributed to the activation of the NF-« pathway (17). Finally,
to elucidate the holistic effect of L. plantarum JDFM LP11
consumption on weaned piglets, RNA-Seq was performed in
ileum tissues. Comparative transcriptomic analysis revealed
25 differentially expressed genes (DEGs) involved in the
downregulation of intestinal inflammatory responses (18).
Similarly, RNA-Seq revealed that Saccharomyces boulardii
administration to C57BL/6 mice stimulated systemic inflam-
matory responses (19) (Table 1).

Studies from our laboratory utilizing the dorsal air
pouch model of inflammation showed that certain probiotic
strains can also exert extraintestinal proinflammatory and
immunostimulatory effects. Sterile air was subcutaneously
injected to the back of BALB/c mice and after 6 d the
intervention group received an injection with the probiotic
strain L. paracasei K5. Targeted protein microarray analysis
of cytokines and chemokines in the exudates revealed that
L. paracasei K5 upregulated CC and CXC chemokines and
cytokines of the IL-1 family, supporting the activation and
migration of leukocytes on site. The expression of these
factors, alongside the expression of Toll-like receptor (TLR)-
2, TLR-4, TLR-6, and TLR-9, were validated using qPCR.
These effects could be attributed to the probiotic-induced
stimulation of p38 mitogen-activated protein kinase signal-
ing pathway (20). Additional preclinical studies utilizing
protein microarrays to investigate the immunoregulatory
effects of probiotics are presented in Table 1 (21-23).

The employment of high-throughput platforms in clin-
ical studies for the investigation of probiotic-induced im-
munomodulatory effects has been limited. L. casei Shirota
or skim milk was administered to healthy elderly subjects
in a randomized, placebo-controlled, single-blind crossover
study, for a period of 4 wk, followed by a 4-wk washout, and a
crossover to the other treatment. At the end of each treatment
peripheral blood and saliva were analyzed in antibody mi-
croarrays for the presence of immunological markers. It was
found that probiotic supplementation promoted the activity
of NK cells and increased the ratio of IL-10 to IL-12. Overall,
the intervention led to a reduction of the inflammatory status
of the host, while supporting innate immunity (24). In a
randomized, placebo-controlled, crossover study, 7 healthy
volunteers were assigned to receive L. acidophilus, L. casei,
L. rhamnosus, or a maltodextrin solution (placebo group),
for 6 wk (25). At the day of intervention, the participants
consumed the probiotics in maltodextrose solution every
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30 min for 6 h, leading to duodenum biopsy. Affymetrix
microarrays were utilized to analyze the transcriptomic
profile of the duodenum. Results analysis was carried out
by the generation of regulatory nodes (protein-protein and
protein-DNA interactions) using the Bibliosphere software.
The results demonstrated that L. casei induced the expression
of TLR-3 and TLR-9, L. acidophilus upregulated various ILs
and interfered with IL-23 signaling, whereas L. rhamno-
sus modulated IFN-signaling pathways. Interestingly, these
transcriptomic changes were found to be highly variable
among participants (25). The calculation of the CV revealed
that genes encoding factors with predominant roles in
cellular signaling, such as the transcriptional factor signal
transducer and activator of transcription 3, demonstrated
the lowest expression variability. In contrast, chemokines of
the CC family exhibited the highest expression variability
(25). Finally, RNA-Seq technology was used to investigate
the effect of L. rhamnosus GG (LGG) on whole blood cell
expression in elderly healthy volunteers (26). Differential
expression and ingenuity pathway analysis showed that
molecular networks involved in crucial processes, such as
immune cell trafficking, inflammatory response, and cell-to-
cell signaling, were modulated by the probiotic strain. These
effects could be attributed to inhibition of NF-«B complex
activation and CCL2 expression (26).

Transcriptomic and proteomic studies of the effect of
probiotics on host metabolic pathways

Many studies have correlated mono- or multispecies pro-
biotic interventions with distinct effects on the expression
of genes associated with carbohydrate and lipid metabolic
pathways. The introduction of multiomics approaches has
supported the thorough investigation of these alterations in
models of metabolic disease (Table 2). Transcriptomic mi-
croarray analysis of hepatic tissues extracted from high-fat-
diet (HFD) mice supplemented with B. pseudocatenulatum
CECT 7765, exhibited decreased expression of CD36 (Cd36),
a fatty acid transporter that regulates lipid accumulation
in the liver, and upregulated expression of phosphatase
1 regulatory subunit 3B (Ppplr3b), early growth response
1 (Egrl), and insulin growth factor binding protein 2
(Igfbp2), counteracting the effects of the HFD (27). For in-
depth analysis of the molecular events associated with L.
acidophilus SJLHO01 supplementation in HFD mice, RNA-
Seq technology was used. It was shown that the intervention
resulted in 844 DEGs, of which 275 DEGs were correlated
with lipid metabolism and ion transport (28). Validation of
the downregulated expression of glucose transporter type 4
(Glut4), scavenging receptor Cd36, and Tlr-2, and upregu-
lated expression of cholesterol synthesis-related genes, such
as apoA4 (ApoA4) and 3-hydroxy-3-methylglutaryl-CoA
reductase (Hmgcr), was performed by qRT-PCR. Notably,
the probiotic-treated mice exhibited significant reductions
of total cholesterol and oral glucose concentrations (28).
Similarly, RNA-Seq analysis was performed to study the
modulation of lipid metabolism of broilers treated with
L. johnsonii BS15 (29) and of weaned piglets fed with

L. reuteri (30) (Table 2). Protein microarrays can also be
used to investigate probiotic-induced alterations of host
metabolic pathways. For example, it has been demonstrated
that L. plantarum Ln4 administration in HFD obese mice
significantly downregulated the expression of adipokines,
leptin, lipocalin-2, and angiopoietin-like protein-L3, which
are correlated with insulin resistance and obesity (31).
Similarly, adipokine arrays showed a decrease in leptin
concentration in mice supplemented with L. plantarum
strains DSR M2 and DSR 920 (32).

Global transcriptomic analysis has also been employed
in clinical studies focusing on the effects of probiotics
on postprandial metabolism (Table 2). Healthy, young
male volunteers participated in a randomized, double-blind,
crossover study to investigate the effect of probiotic yoghurt
(Thermophilic Yoflex Culture and LGG) on gene expression
after meals (33). The volunteers received the probiotic yo-
ghurt or acidified milk for 2 wk, followed by a 2-wk washout
period and then a crossover to the other group. Distinct
changes in the peripheral blood transcriptome between the
probiotic and control groups were recorded. Specifically,
RNA-Seq analysis revealed changes in the expression of gene
sets involved in glycolysis, oxidative phosphorylation, and
inflammation, such as aryl hydrocarbon receptor and epireg-
ulin, with distinct kinetic characteristics in the probiotic
group. Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis indicated a significant positive enrichment of the
insulin signaling pathway, after consumption of the probiotic
yoghurt (33). The KEGG pathway database can facilitate
the meaningful analysis of transcriptomic data, because it
supports the visualization of results and determination of
their biological significance (34).

In another study, cDNA and protein microarrays were
used for the study of time-dependent effects of L. plantarum
WCEFS1 supplementation on healthy volunteers. To this aim,
the probiotic was infused to the pylorus of the participants for
1 or 6 h and tissue samples were collected for transcriptomic
(1h) and proteomic (6 h) analysis. Transcriptomic analysis of
samples from the duodenal mucosa after short-term stimula-
tions revealed the abrupt inhibition in fatty acid metabolism
and cell proliferation. Proteomic analysis showed that genes
correlated to lipid and fatty acid metabolism, as well as genes
involved in oxidative stress protection, were upregulated.
Moreover, 1-h probiotic treatments led to modulation of
genes encoding for innate immunity factors, whereas 6-h
stimulations modulated the expression of members of the
human leukocyte antigen family (35).

RNA-Seq and microarray technologies are employed to
elucidate the molecular mechanisms of probiotic action. Both
platforms can efficiently detect DEGs and provide a high-
resolution snapshot of gene expression at a specific time-
point and under set conditions. Additionally, RNA-Seq can
identify noncoding transcripts such as microRNAs and long
noncoding RNAs, important epigenetic regulators of the cell,
offering a more realistic picture of physiological conditions
(36, 37). Recent comparative studies have shown that RNA-
Seq exhibits higher sensitivity and wider dynamic range than
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120z Ateniga4 Gz uo 1sanb AQ ZGZ61 1 9/v L 09BWU/SSOUBAPER/EE0 | 0 | /I0P/3|21E-80UBAPE/SSOUBADPE/WOD dNO"oIWspeoe//:sdny WwoJj papeojumoq



'SSWOUID) pue s3UD Jo eIPadoPAdu] 010AY 'DDTY ‘US101d BuIpUIg-101D€) LIMOID 3
Bulpuiq poe Aney ‘dgo4 (| pidijobuiyds ‘aseiniesap-4v ‘[sba@ ‘uts10id aADeaI-D) gy ‘SHUN Bulwioy AUOJOD ‘N4D) ‘9€ UOIBIIURIRYIP JO SI2ISNP ‘9gp)) I-uter0id a1

Downloaded from https://academic.oup.com/advances/advance-article/doi/10.1093/advances/nmab014/6149252 by guest on 25 February 2021

‘uonenbaidn Juedyiubis Ajjesnsiels | ‘uonenbaiumop 1uedyiubis
Aj[eonsiels ‘4 ‘sexaqelp g 9dA1 ‘gz ‘A|iwiey Ja1ed 31njos ‘S ‘0 Jo1dedas paleAnde-olels)ioid swosixolad ‘myydd uidijuad ‘4 ‘YAl dnoib gy ssedijoydsoyd ‘bybrpj4 ‘uimioid sixerowayd Buindadde-|Ayisul dIN ‘DD Snsouwbyl snjiI2pqo1oanT ‘Do

1INSUL 49491 ‘1 ((H)dAVN) 25eusbolpAyap 91e411005! ‘[yp] ‘2519NPal YO -|A1eIN|BIAYISW-E-AX0IPAY-€ 2B 131p 18j-ybly ‘g4H ‘ABojoiuQ auan ‘0D ‘ursioid
najodoibue -] dONY ‘| Jequisw Ajiwiey wnba|ggng aseIsyiuis yod-|Ae '16gsy |

(5€) e 13 150011

(€9) Je 18 UoLng

(z9) 1219997

(1€) e 1o 997

(0€) '[e 32 bueyz

(60) '|e 32 BUID

sabueyd
dlwoldudsuely [eqolD

asuodsail
ulnsul [eipueldisody,

sio1oweled
A1s200 paroidul|

siaylewolq
Azl Jo uoissaidxa ay3

paie|npoul pue A11saqo
PIONPUI-IBIP PalenualY

wisijogeiaw
5]UOJ0D PaJAYY

wisljogelaw
oneday palay

eIwWadA|b1adAy pue
e|Wa|0Ja1s3|0yDIadAy

LupId
‘9epDY ‘1dge4d ‘1sbaq?t
SEISCET)
Buijeubis uinsul 993
passaidxa Ajjenuaiayig
P-4NLT '1-dDW T
'SI9yJeW UolIeUIUIR|U|

0Yvdd1 sueoid
paie|al-sisauabodi
¢-unedod|t
‘unds|t 's-‘e-"1-dg4oIt

T-LdONVT gD T
:anssi 1e) [ewApipid3y

wisijogelaud
pioe disjoul| pue

DlUuopIydeIe 0) Pale|al
SOD JO 1uawyduug

eybze|d?t z-ulld ‘L-ulldd

16gsov{ ‘zdaeq
DBWHY :sausb
pa1e]21-SIS9YIUAS
|012153]04D
€e2|5)
'7e012/S 7 :sausb
pa1e|2.-Wsijogelaw

(sAeseoidiw)
sojwoiduosuel|

(bas-wNY)
sojwoidiosuel |

(Kewre
peaq xo(dinw)
$DIUI09104d

(sAeseoidjw)
SO]WO104d

(bas-yNy)
sojwoidosuel|

(bas-v¥Ny)
sojwoidiosuel |

(bas-v¥NY)

aNss1 SNIOJAd

pooig

10} |lewApipida pue
'SNSSILIDAI| WINISS

anssi) 18}
|ewApipida ‘ewse|d

saNssi wnunfar

anssh deday

anssiy asodipe

Y 910 | J0j uoisnjul sniojAd
(N4D £,01=,01) LS4OM winipyupjd 7
AM g Joy Ajtep
's0 4ad (D97 pue 21NN XayoA
dljiydoway ] ) UnyboA d101gold

M 7| 1oy A|lep ‘obered
[e10°(N4D 401) 06 YSA wnipyupid
7'(N4D (01) TW ¥Sa wnuiupyd 7

SM G 10} Ajlep ‘9beaeb
[BIO (N4D g0 X §) pUT wuppupid 7

p 0l Joj uondwnsuod
[e10'(N4D 401 X T) E00YTZ Hanai 7

p G| J0j uondwnsuod
[e10(N4D 401) G159 Huosuyol ]

AM 0T
10§ Ajiep ‘abeneb [e10(N4D 401)

(8—/ = U) SI931UN|OA

BunoA AYyeaH Apnis I9A0SSOID
pa||0J1u0-0gade|d paziwopuey

(£ = u) slaaqunjon

3ew BunoA AyijeaH "ubisap Apnis
19A0SSOID ‘pUI|g-3|gNOp ‘PazZILIOpURY

(G = U) 921w sjeW (9/19/5D A4H

Apnis [euliuy

(£=G =) 321w 9/19/5D A4H

Apnis [euliuy
6=u)
(dUYM 96187 X 2dRIPUET PRIGSSOID

Apnis [euliuy
(001 = U) (005 GGOD) SPIY2 ey

Apnis [eudiuy

(8 = U) 21w r9/19/5D A4H

(87) le 1@ uns pPadNPU-g4H pPa1WI 9500N|9 sojwoxdiosues| pUE [BUIISDIUI0IISED) LOOHr-B7 Snj1ydopiop snjj1apqoidnT Apnis [euwiuy
sausb
pa1e|a.-Wsijogelaw
S1eipAyoaued (S = ) 31U (9/19/5D A4H
ejwapidipadAy M £ 104 Ajlep
(L) pue s|so1eas diieday sausb (sAedseoudiw) 'afbeneb [e1o (N4D 401) $944 103D
‘|e 19 zald-eAON pa3ejal-g4H parenusny pajejas-1iodsuedy pidit sojwoidisuel| 2NSSI J9AI winipjNuU21p20pNasd wnia1opqopyilg Apnis [ewiuy
ERITEYETEN| awod3no |esiuld swisiueydaw Je[nd3|o wuope|d sd1wQ 9|dwes juswieal] Apns jo adA)

,buijeubis dljogeiaw ul sonoigosd Jo 19919 a3 JO SaIPNIS [ediul]d pue [edjulpaid diwoaloid pue djwoidudsuel]  Z 379VL

6 Kiousietal.



microarrays (36). However, high cost, and complexity of data
analysis correlated with this approach, must be taken into
consideration. Conclusively, both platforms can contribute
greatly to probiotic research by providing high-quality data.

The application of metabolomics to probiotic
interventions

Metabolomic approaches are utilized for the identification
and characterization of the sum of metabolites in cells,
tissues, organs, or organisms, produced under set conditions
(38). GC-MS is the gold standard for metabolomic studies
of volatile compounds with biological relevance (39). In this
context GC-MS is widely applied for accurate detection and
determination of SCFAs in probiotic animal studies (40-42)
(Table 3). SCFAs are produced by gut microbiota and play
a major role in host metabolism, inflammation, intestinal
homeostasis, and microbiota-gut-brain communication (43,
44). For example, GC-MS recorded the enhanced production
of SCFAs in C57BL/6] mice, after oral administration daily
for 7 wk of the probiotic strain B. animalis ssp. lactis
GCL2505. Notably, the probiotic-treated mice exhibited
higher cecal and plasma concentrations of acetate and
propionate that were positively correlated with improved glu-
cose tolerance and reduced fat accumulation and adipocyte
volume (40).

Variations of the GC-MS platform can be applied for
targeted and untargeted metabolomic studies, and the iden-
tification of specific metabolites or the sum of metabolites
in a sample (45). In this regard, GC coupled with a flame
ionization detector is a reliable technique to assess changes
in fatty acid profiles in animals following administration
of probiotic bacteria (46-48) (Table 3). Furthermore, GC-
time-of-flight-MS has been used to capture changes in
fatty acid content of plasma samples, derived from infants
who consumed cereal fortified with the probiotic strain
L. paracasei LF19. Among the 288 differentially produced
metabolites, concentrations of the MUFA palmitoleic acid
were significantly lower in the probiotic group (49).

LC-MS is commonly preferred for studies investigating
nonvolatile lipid compounds in complex samples (Table 3).
In this respect, ultra-high-performance LC was employed
to profile the fecal lipid content of infants who consumed
LGG during the first months of life (50). It was demon-
strated that probiotic treatment differentially altered the
production of various fatty acids and led to the promotion
of immunological tolerance, which could be beneficial in
the context of allergy or asthma prevention (50). Similarly,
newborns who were recruited to consume a polybiotic mix,
consisting of Bifidobacterium bifidum, B. breve, B. longum,
and B. longum ssp. infantis, showed significant changes
in the concentrations of fecal fatty acids, sterol lipids,
and glycerophospholipids compared with breastfed infants
or newborns who consumed regular whey-based formula
(51). Another important application of LC-MS in probiotic
research is for the measurement of bile acids in plasma
or feces of preclinical or clinical experimental models (52—
54) (Table 3). Ultra-performance LC analysis showed an

increase in fecal unconjugated bile acid content in mice fed
the probiotic mix Lab4 (L. acidophilus CUL21 and CUL60,
B. bifidum CUL20, and B. animalis ssp. lactis CUL34), and
L. plantarum CUL66 (52). Moreover, alterations in amino
acid metabolism and decreased plasma concentrations of
primary and secondary conjugated bile acids were recorded
in overweight adults who received B. animalis ssp. lactis 420
alone or in combination with Litesse Ultra polydextrose.
These metabolic changes were accompanied by a clinical
reduction of fat mass (54).

NMR spectroscopy is a commonly applied analytical
method in metabolomics for the identification and quan-
tification of compounds in nontargeted approaches. It can
be used for the identification of low molecular weight com-
pounds that are present in high concentrations in complex
samples (55). NMR analysis showed that conventionalized
gnotobiotic mice fed Bifidobacterium longum BB536 had sig-
nificantly elevated fecal concentrations of butyrate, acetate,
and pimelate, a biotin precursor, compared with control
mice (56). In the same manner, children with a high risk of
eczema who were enrolled in a double blind, randomized,
placebo-controlled trial and consumed the polybiotic mix
of strains B. bifidum W23, B. animalis ssp. lactis W52, and
Lactococcus lactis W58, showed enhanced fecal total SCFA
and acetate concentrations and temporary protection against
the development of eczema (57).

Finally, metabolomic platforms are also used to investigate
changes in the concentrations of neurotransmitters and
hormones linked to probiotic supplementation (Table 3).
For the study of monoamine neurotransmitters that could
be present in nanomolar concentrations in samples, HPLC-
electrochemical detection (HPLC-ECD) is commonly used
(58). For example, intestinal tissues extracted from early-
life-stressed maternally separated C57B1/6] male breastfed
pups, gavaged with B. pseudocatenulatum, were analyzed
with HPLC-ECD for the evaluation of monoamine content.
It was found that probiotic supplementation normalized
dopamine and adrenaline concentrations. These effects were
accompanied by the amelioration of stress and depression-
like behaviors (59). Similar findings were presented in an
independent study investigating the psychotropic effects of
L. plantrarum PS128 on maternally separated mice (60)
(Table 3).

The use of metagenomics in probiotic research

Metagenomics are employed for the investigation of the
structure (taxonomic metagenomics) and function (func-
tional metagenomics) of complex microbial communities,
present in any environment with specific conditions, without
the need of isolation and propagation of the microbes
in laboratory settings (61). Metagenomic studies utilize
2 approaches: amplicon-based detection of specific se-
quences, such as hypervariable regions of the 16S rRNA gene
in bacteria; or whole-genome shotgun sequencing (WGS)
(62). WGS provides higher sensitivity and higher yield in
variant detection; however, in many cases amplicon sequenc-
ing is more accessible, due to lower cost and less complicated
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bioinformatic needs (63). Both platforms have been used
for the investigation of probiotic-induced modulations in
the gut microbiome, and the effects on inflammation, gut-
brain communication and neurological disorders, and host
metabolism (Table 4).

Metagenomics to study the effect of probiotic-induced
microbiome modulation in intestinal inflammation.

Gut dysbiosis has been implicated as a contributing factor
in inflammation, because it supports the proliferation of
inflammation-promoting bacteria, often leading to acute
colitis. Several preclinical studies have aimed at evaluat-
ing the potential of probiotic and symbiotic treatments
to reverse these structural microbiota changes (64, 65)
(Table 4). To this end, administration of the probiotic mix
L. acidophilus, L. rhamnosus, and B. lactis alone or in
combination with inulin, to DSS-treated C57BL/6] mice,
resulted in the increase of beneficial bacterial popula-
tions of Bifidobacterium, Lachnospiraceae_NK4A136, and
Lachnospiraceae_UCG-006, and in the decrease of bacteria
belonging to the Alistipes genus, as demonstrated by 16S
rRNA sequencing. Additionally, these microbial alterations
were accompanied by attenuation of gut inflammation, as
evidenced by histological examinations (64). Accordingly,
shotgun metagenomics reported that administration of L.
plantarum LP-Onlly to IL-10~/~ mice, an inflammatory
bowel disease model, induced the proliferation of Bacteroides
and Akkermansia muciniphila. These changes could be
correlated with the improved inflammation profile observed
(65). The dysbiotic gut is also characterized by epigenetic
modifications in the colonic tissue that are associated with
increased risk of carcinogenesis. These alterations mainly
involve promoter hypermethylation of tumor suppressors,
such as the Wnt inhibitory factor 1 (WIF1) and other
genes involved in the Wnt signaling pathway (66). Recent
metagenomic studies of human colon cancer tissues have
correlated these epigenetic changes with high abundance of
specific tumorigenic bacteria, such as Peptostreptococcus and
Fusobacterium species (67). Furthermore, high abundance of
these bacterial species has been linked with the onset and
lower survival rate of patients with colorectal cancer (CRC)
(68). Metagenomic analysis was employed in 2 clinical stud-
ies to investigate the potential inhibitory effect of probiotic
supplementation against the proliferation of these bacterial
species (69, 70) (Table 4). In the first study, CRC patients were
assigned to receive a mixture of B. longum, L. acidophilus, and
E. faecalis or placebo, for 5 d. Colonic tissue samples were
collected, and their microbial load was analyzed by 16S rRNA
pyrosequencing. Metagenomic analysis revealed a significant
reduction in Peptostreptococcus and Comamonas populations
and a decrease from 10% to 2% in Fusobacterium species
(69). In the second study, 15 CRC patients were assigned to
receive daily probiotic tablets containing B. lactis Bl-04 and L.
acidophilus NCFM or placebo, from the day of diagnosis until
surgery. The intervention resulted in elevated Clostridiales
spp. and butyrate-producing Faecalibacterium, Roseburia,
and Eubacterium bacteria, whereas the CRC-associated
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Fusobacterium and Peptostreptococcus species were decreased
in the probiotic group, as evidenced byl6S rRNA gene
sequencing (70).

Metagenomics to study the effect of probiotic-directed
microbiome modulation in neurological disorders.
Probiotic administration can affect neurodevelopment, be-
havior, and mood disorders by modifying the gut micro-
biome (71-76) (Table 4). It has been demonstrated that
Bifidobacterium breve CCFM1025 altered the gut microbiota
composition of chronically stressed C57BL/6] male mice,
after a 5-wk oral administration regimen (73). 16S rRNA
sequencing of fecal samples revealed the increased abun-
dance of SCFA-producing Allobaculum spp., Coprococcus
spp., and Bifidobacterium spp. Higher stool SCFA concen-
trations are positively correlated with elevated colonic 5-
hydroxytryptophan and 5-hydroxytryptamine hippocampal
concentrations, resulting in antidepressant effects (73). Sim-
ilarly, administration of a probiotic formulation containing
L. plantarum LP3, L. rhamnosus LR5, B. lactis BL3, B. breve
BR3, and Pediococcus pentosaceus PP1 for 8 wk to mice,
reversed stress-induced microbiota structural changes by
stimulating proliferation of Actinobacteria, Cyanobacteria,
Lactobacillus, and Bifidobacterium populations. These com-
positional alterations could have supported attenuation of
serum corticosterone concentrations and subsequent allevi-
ation of depressive-like manifestations (74). Metagenomics
was also employed in a randomized, double-blind, placebo-
controlled, multicenter clinical trial to investigate the effect
of probiotic capsules consisting of B. bifidumn BGN4 and
B. longum BORI to individuals aged >65 y for a 3-mo
period (75). Stool samples were collected and their microbial
load was examined with 16S rRNA gene sequencing. Signifi-
cant reductions of Eubacterium, Clostridiales, Prevotellaceae,
and Allisonella abundances in the gut were recorded. The
intervention resulted in favorable outcomes in cognitive
function and mental stress (75). Another clinical study
indicated that administration of heat-killed L. gasseri CP2305
to medical students prior to national examination alleviated
stress manifestations and positively influenced their sleep
patterns, while it also reversed microbiota changes related
to stress. Indeed, the probiotic managed to normalize the
abundances of Bifidobacterium spp. and Streptococcus spp.
populations that were disrupted due to stress. Furthermore,
the authors postulated that this probiotic could directly signal
to the brain via the vagus nerve and stimulate the gut-brain
axis (76).

Metagenomics to study the impact of probiotics on host
metabolic control.

A disrupted gut microbiome negatively influences host
metabolism, which can contribute to the development
of metabolic syndrome (77). Metagenomics has revealed
probiotic-directed modulation of gut microbiota for the
management of metabolic disease (78-81) (Table 4). Am-
plicon sequencing of feces sampled from HFD mice gav-
aged with Bifidobacterium pseudolongum showed significant
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changes in the structure and function of the gut micro-
biota. The ratio of Firmicutes/Bacteroidetes was significantly
reduced, whereas Butyricimonas and Bifidobacterium abun-
dances increased. KEGG analysis for the identification of
functional microbiota alterations showed that probiotics
modulated pathways involved in lipid, carbohydrate, and
amino acid metabolism. These findings were accompanied
by the clinical decrease of body mass, visceral fat, and
gross energy intake (79). Furthermore, hyperlipidemic HFD
mice gavaged with L. plantarum FZU3013 had increased
populations of Alistipes, a genus that contains several SCFA-
producing species, and Ruminococcus. The administration of
L. plantarum FZU3013 also minimized the gut population of
Desulfovibrio, which is positively correlated with obesity and
type 2 diabetes (81).

Genomics and comparative genomics of probiotics

The genome of novel potentially probiotic isolates should
be fully sequenced and available in public databases to
facilitate accurate taxonomic identification, investigation of
functional traits, and evaluation of the safety profile (82).
The advancement of next-generation sequencing (NGS)
technologies has made WGS of probiotic strains more
affordable and accessible. Furthermore, the numerous avail-
able bioinformatics tools support assembly, annotation, and
phylogenetic analysis of the genomic sequences (83, 84).
Computational mining of whole genomes is used to construct
phylogenetic trees, provide more accurate insights into
the evolutionary relations between strains, and facilitate
molecular taxonomy. In this light, the genus Lactobacillus
has recently been reclassified as 25 genera, based on shared
physiological and metabolic properties. The new taxonomic
classification could enhance our understanding of common
probiotic mechanisms of action (85, 86).

Comparative genomics is also employed to investigate
the range of phenotypic variability between strains, as well
as to identify the entire set of strain-specific genes in their
pangenome (the entire set of genes of all strains within
a monophyletic group) and to highlight shared properties
(87). Moreover, it can elucidate conserved sequences in
the genome of probiotics that code for essential cellular
functions, and regulatory elements that modulate their
expression. Cluster of orthologous genes analysis can classify
these findings into distinct categories, such as clusters in-
volved in transcription, metabolism, cell motility, and signal
transduction, among others (88). Furthermore, genomic
comparison of novel isolates with already characterized pro-
biotics can reveal functional properties, such as adhesion to
epithelial cells, autoaggregation, stress response mechanisms,
and defense mechanisms, including the presence of virulence
factors and resistance to antibiotics (89).

The rapid spread of antibiotic resistance is a major threat
to global health. Probiotic bacteria with intrinsic resistance
to antibiotics are generally recognized as safe because they
present a minimal risk of spreading drug-resistant genes to
other more harmful species. However, in probiotic stains
with acquired resistance genes, mainly carried on mobile

genetic elements, such as plasmids, transposons, and inte-
grons, the possibility of horizontal transmission is considered
to be high, thus representing a serious safety issue (90).
Indeed, the transfer of a vancomycin resistance gene from
enterococci to the probiotic strain L. acidophilus has been
recorded in vitro and, more importantly, in the gut of mice
at high frequencies (91). Assessment of antibiotic resistance
of novel probiotic strains is performed phenotypically by
the determination of minimal inhibitory concentrations (92),
and genotypically by PCR-based techniques and sequencing
(93, 94). For the identification and localization of previously
undetected antibiotic resistance genes, DNA microarrays,
as well as WGS platforms, might also be used (94, 95).
Furthermore, multiomics technologies and other advanced
molecular tools, such as live imaging, can accurately rep-
resent probiotics—-microbiome interactions and evaluate the
risk of antibiotic resistance gene transfer, as well as risks
linked to long-term consumption (96). To date, horizontal
gene transfer from probiotics to other bacteria has not been
recorded in the human host; however, further research is
needed.

Future probiotics and the road to success

Recent breakthroughs in the study of the microbiome,
supported by multiomics and systems biology approaches,
have highlighted the role of the gut microbiota in the
host’s health. It has also been demonstrated that the gut
microbiota, alongside other host- and sex-specific traits,
contributes significantly to the efficacy of probiotic supple-
mentation. Consequently, the idea of personalized, tailor-
made probiotics has been developed, setting the stage for a
new era of probiotic research (97). Evidently, personalized
probiotic supplementation should consider anthropometric
and immunological features, as well as the microbiome and
genetic fingerprint of the host (Figure 1). Indeed, several
studies have associated genetic diversity with specific gut
microbial populations (98, 99). The observed variation was
pinpointed in loci coding for factors involved in host-
microbial interactions, such as the pattern recognition re-
ceptor and chemokine signaling, and in metabolic pathways.
These data could allude to the fact that the genetic makeup
of the host could affect probiotic action. Furthermore, a
number of studies have shown that the human gut microbiota
exerts a host-specific resistance to probiotic colonization.
In a recent elegant study, individuals who consumed the
commercial probiotic mix Supherb Bio-25 (B. bifidum,
L. rhamnosus, L. lactis, L. casei ssp. casei, B. breve, S.
thermophilus, B. longum ssp. longum, L. casei ssp. paracasei,
L. plantarum, and B. longum ssp. infantis) exhibited host-
and site-specific patterns of colonization. Interestingly, germ-
free mice that were conventionalized with fecal microbiota
from individuals resistant to probiotic colonization, were
less receptive to probiotic supplementation, whereas mice
that were fed with fecal microbiota of permissive individuals
showed a better response. These findings underline the
fundamental role that the gut microbiota plays in the
efficiency of probiotic colonization (13). Similarly, it has
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FIGURE 1 The road to precision probiotics. The unique host genetic and microbiota signatures, alongside anthropological and immune
parameters, can determine the efficiency of probiotic supplementation. The identification of these factors using high-throughput
multiomics analysis and systems biology approaches can set the basis for tailor-made probiotic interventions.

been shown that probiotic resistance to colonization could
be associated with the diversity of the residing microbial
populations. In this respect, L. helveticus MTCC 5463
colonization was more efficient in healthy individuals, who
had a higher gut microbiome «-diversity (100). It has also
been demonstrated recently that antibiotic treatments can
alleviate this innate resistance to probiotic colonization.
Indeed, individuals who were treated with wide-spectrum
antibiotics prior to supplementation with Supherb Bio-25,
were more permissive than naive individuals (101). Com-
parative analysis of metagenomic data from permissive and
nonpermissive individuals could reveal species that could act
as predictive markers for the success of probiotic supplemen-
tation. For example, the microbiome of the responders to L.
helveticus MTCC 5463 supplementation had decreased abun-
dance of Clostridium and increased Eubacterium populations
(100).

Probiotic research needs to gravitate toward the under-
standing of strain-specific mechanisms of action, by delving
deeper into their specific genetic and metabolic signatures.
The advancement of the field of comparative genomics has fa-
cilitated the prediction of probiotic characters and attributes.
Additionally, global transcriptome and proteome analyses
are being employed to investigate the production of proteins
and other small molecules that implement probiotic action,
and posttranslational modifications that can modulate their
activity (102). Metabolomic studies have aided in the char-
acterization of produced metabolites, termed “postbiotics.”
Postbiotics are soluble, bioactive compounds secreted by
probiotic microorganisms in their growth medium (103),
that can originate from both intracellular and extracellular
compartments and can be cell surface proteins, secreted
proteins and peptides, exopolysaccharides, teichoic acids,
organic acids such as SCFAs, enzymes, neurotransmitters
such as y-aminobutyric acid, or vitamins (104). They can act
alone or synergistically and induce immunomodulatory or
epigenetic effects in the host, whereas some of them can exert
antimicrobial activities against pathogenic bacteria (105).
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The fractionation of cell-free supernatants, and enzymatic
(proteinase K, trypsin, catalase, «-chymotrypsin), heat, and
pH treatments, can provide valuable information about
their molecular weight and chemical identity. However, only
high-throughput analyses can provide definitive answers
about the identity and physicochemical properties of these
compounds. Such analyses can be carried out in platforms
like LC-MS or GC-MS and NMR. Importantly, metabolomics
can decipher the context in which these molecules can be
produced and secreted. Several studies have shown that
probiotics can produce a wide array of metabolites, based on
the environmental stimuli that they receive. More specifically,
it has been shown that gastrointestinal tract conditions
(106), available nutrients (107), as well as proinflammatory
microenvironments (108), can determine the production
and secretion of certain metabolites. Apart from host-
related interactions, bacteria grown in food matrices show
different metabolic signatures compared with those cultured
in common laboratory media (109). These platforms can
also be used to investigate the interactions between different
probiotic strains of multispecies supplements, because inter-
bacterial communication can also modulate gene expression
and consequent metabolite production. It is known that
bacteria utilize an array of language signals, such as quorum
sensing, to communicate with other bacteria of the same
or different species. The exchanged signals can determine
important behaviors such as biofilm formation, production
of virulence factors, metabolism, and response to stress
(110). These language signals and other metabolites could
also determine the probiotic-microbiome interactions. For
instance, a recent study supported that lactobacilli contained
in the mix Supherb Bio-25 delayed microbiome reconstitu-
tion after antibiotic treatments, because they produced un-
characterized antibacterial compound(s) (101). Conclusively,
comparative metabolomic studies between different strains
of probiotics, or strains grown in different media or simulated
host conditions, could be informative about their species-
and host-specific actions.
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The current trend in probiotic research is the identifi-
cation of microorganisms with probiotic potential that are
not originated from dairy products. These microorganisms,
termed “next-generation probiotics” (NGPs), are usually
isolated from the gastrointestinal tract of mammals and
are solely intended for pharmaceutical use (111). Because
they require stringent survival conditions, such as complex
growth media and reduced oxygen availability, their prop-
agation in laboratory conditions is quite challenging. The
advent of culture-independent platforms has facilitated the
study of their probiotic attributes and safety profile in silico.
In this context, metagenomics has supported the discovery
of novel NGPs, whereas comparative genomics has provided
a basis for the characterization of their biological functions,
virulence, and antibiotic susceptibility (112). Furthermore,
proteomics and metabolomics can be employed for the
investigation of temporal and spatial actions on the host and
accurately describe their holistic effects. Indeed, several stud-
ies have already associated NGPs, such as Prevotella copri,
Bacteroides thetaiotaomicron, Akkermansia muciniphila, and
Faecalibacterium prausnitzii, with favorable health outcomes
in intestinal inflammation and metabolic disorders (113).
For the commercialization of these strains, it is important to
ensure maximum viability during production and shelf life,
taking into consideration their unique survival requirements
(111). Furthermore, survival during gastric passage should
be guaranteed, because these bacteria have evolved to
withstand the conditions of the lower, but not the upper,
gastrointestinal tract (114). Lastly, it is important to note that
appropriate regulatory frameworks should be put in place
for the evaluation, characterization, and commercialization
of products containing these bacteria (111).

Multiomics analysis has, indeed, broadened our un-
derstanding about the global effects of probiotic supple-
mentation. Although these platforms have been extensively
used to explore the interaction of probiotics with immune
and metabolic signaling, as well as with the residing gut
populations, the meaningful interpretation of the generated
data remains challenging. The evolving field of systems
biology has provided the mathematical and computational
tools to create probabilistic models of biological function at
the single-cell, tissue, or organ-system scale based on the
data derived from these platforms (115). More specifically,
systems biology utilizes statistical methods, such as gene
set enrichment analysis, and computational units, such as
biological networks and dynamic models, to decipher the
information flow from gene to transcript, to protein and
metabolites. However, the rapid production of experimental
data demands more robust tools than mechanistic models.
To this aim, artificial intelligence (AI) approaches, such
as machine learning, deep learning, and artificial neural
networks, can be utilized to manage big numerical datasets.
The predictive models produced by Al could be invaluable
for precision medicine (115). Systems biology has, indeed,
been proven useful in probiotic and microbiome research.
More specifically, the compilation of data extracted by high-
throughput platforms has aided in the understanding of the

genomic and functional properties of probiotics and has
supported the strain specificity of their actions (116), whereas
systems medicine and microbiome-wide association studies
have provided insights about the role of the microbiome in
health and disease, paving the way to targeted therapeutics
(117). In a representative study, Bisanz et al. (118) charac-
terized the global molecular and cellular events triggered
by vaginal probiotic treatments for postmenopausal women
(118). Microbial profiling by NGS, microarray analysis of
chemokine and cytokine production, and metabolomic GC-
MS analysis of the vaginal fluid suggested that L. rhamnosus
GR-1 and L. reuteri RC-14 did induce mild changes that
were, however, not reflected in clinical outcomes. The authors
postulated that host-specific factors and the small sample
size contributed to the lack of statistically significant clinical
results and proposed that further studies are needed. Thus,
this multifaceted analysis managed to reveal fine molecular
changes that would otherwise be overlooked.

Novel technologies that have recently been introduced
could complement our understanding about host-microbe
interactions. Single-cell multiomics analyses can realize the
simultaneous profiling of nucleic acids and proteins at
single-cell resolution. Different platforms allow for combined
genome and transcriptome sequencing (single-cell genome
and transcriptome sequencing), genome, epigenome, and
transcriptome sequencing (single-cell triple omics sequenc-
ing), or transcriptome and proteome sequencing (RNA ex-
pression and protein sequencing) (119). These cutting-edge
technologies are highly suitable to study dynamic processes,
such as time-dependent host-microbe interactions (120).
The 2 major limitations on the implementation of such
techniques are cost and data analysis. Data analysis of these
platforms includes the integration of a bulk of data generated
from different platforms (121, 122), which complicates the
meaningful interpretation of the results (123). However, as
the use of these technologies and the field of systems biology
mature, these obstacles are expected to be overcome.

Conclusions

here is a growing body of evidence that demonstrates the
prophylactic and therapeutic potential of probiotics against
acute or chronic diseases. Nevertheless, probiotics have
not yet been introduced in clinical practice, except for
the management of a limited number of gastrointestinal
disorders, because several questions related to probiotic
production, efficacy, and health benefits remain unanswered.
The great variability of probiotic mechanisms of action and
host-specific traits has contributed greatly to discrepancies in
outcomes presented in preclinical and clinical studies. Clini-
cal protocols differ a lot between probiotic studies, thus meta-
analysis often leads to contradictory conclusions. Further-
more, the dynamics of probiotic—probiotic interactions are
insufficiently researched; consequently it is difficult to assess
the effectiveness of multistrain supplementation because it
is unclear whether inhibitory or proliferative relations exist
among strains. To this end, multiomics approaches can be ap-
plied to systematically characterize and predict host-microbe
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and microbe-microbe interactions and evaluate probiotic
efficacy. The identification of probiotic genes and the context
in which they are expressed, as well as the immense range
of metabolites that can be produced by each strain, can
contribute to the elucidation of strain-specific actions and
interactions with the host and its microbiota. Accordingly,
high-throughput analyses of the unique genomic, proteomic,
metabolomic, and metagenomic signature of the host can
shed light on factors that influence the efficiency of probiotic
action. Adding to that, the thorough investigation of NGP
and postbiotic attributes can make available an arsenal
of bioactive compounds with potential health-promoting
effects to people who are allergic to dairy products or to other
vulnerable populations, such as the immunocompromised,
and are advised not to consume traditional probiotic foods or
supplements. In future, routine use of multiomics platforms,
single-cell technologies, and the integration of systems
biology in probiotic research will contribute to the careful
design of tailor-made interventions that would take into
consideration species-, host-, and disease-specific factors and
hopefully bring probiotic supplementation from bench to
bedside.
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