

Population and Evolutionary Genetics

Equilibrium population

Aristotelis C. Papageorgiou, MBG DPTH, apapage@mbg.duth.gr

Gregor Mendel

- He discovered the binary nature of heredity
- The probability of carrying an allele to the next generation is ¹/₂
- Traits are inherited randomly
- Mendel's work remained unknown until 1900

Gregor Mendel (1822-1884)

Charles Darwin

- He described the mechanism of natural selection in evolution
- He founded a dynamic evolutionary theory
- He didn't use any math
- He did not explain the mechanism of inheritance

Discovery of Mendel's Laws (1900)

Carl Erich Correns (1864 - 1933)

Hugo Marie de Vries (1848 - 1935)

Erich Tschermak (1871 - 1962)

Francis Galton

- Statistician, psychologist, sociologist, anthropologist, explorer, geneticist
- Founder of "Eugenics" and "Social Darwinism"
- He studied biometric differences in human populations
- He proposed an alternative theory of inheritance to that of Mendel (**biometric** approach)

Francis Galton (1822–1911)

William Bateson

- He defended **Mendelism** and became the founder of genetics as a science
 - With Charles Davenport and Wilhelm Johannsen
- By the 1930s, Mendelian inheritance was broadly accepted

W. Ballson

William Bateson (1861-1926)

Hardy & Weinberg Solve a Paradox (1908)

- It was believed that for distinct Mendelian characters, all pairs of phenotypes in a population would eventually reach a ratio of 3:1 with the dominant allele increasing and the recessive allele decreasing in frequency
 - Yule argued that "since brachydactyly is a prevalent disease, in time we will meet three individuals with brachydactyly and one normal"
 - In fact, brachydactyly is a very rare disease
 - Hardy replied that 'it is utterly untenable to think that a dominant character will tend to spread through the population while a recessive will tend to disappear"

Hardy, GH (1908). "Mendelian proportions in a mixedpopulation". Science 28: 49–50.

Weinberg, W. (1908). "Über den Verebung der Verebung beim Menschen". *Jahreshefte des Vereins für vaterländische Naturkunde in Württemberg* 64: 368–382.

Estimation of genotype frequencies

- Mendel estimates phenotype and genotype frequencies among the offspring based on the genotype of the parents of a single cross
- Can we estimate the genotype frequencies in a population?
 - Yes, if there is **random reproduction**!

Mendelian, panmictic or random mating population

- A population where mating between adult individuals occurs randomly is called a **Mendelian** population
 - A population with two sexes and adult (sexually mature) individuals
 - All possible mating events are **equally likely**
 - Random mating population
- The probability of interbreeding between individuals with a particular genotype or phenotype is equal to the product of their frequencies in the population

Random play

Female gametes (frequency)

		A (p)	a (Q)
Male gamete: (frequency)	A (p)	AA (p ²)	Ah (pq)
	a (Q)	Ah (pq)	aa (q^2)

P= p²

q²

H=pq+pq= 2 pkgQ=

Hardy's approach

11

		Mendelian probabilities of onspring (zygotes)			
Mating pair	Frequency of mating pair	AA	Aa	аа	
$AA \times AA$	$G_{AA} \times G_{AA} = G_{AA}^{2}$	1	0	0	
$AA \times Aa$	$G_{AA} \times G_{Aa} = G_{AA}G_{Aa}$	1/2	1/2	0	
$Aa \times AA$	$G_{Aa} \times G_{AA} = G_{AA} G_{Aa}$	1/2	1/2	0	
$AA \times aa$	$G_{AA} \times G_{aa} = G_{AA}G_{aa}$	0	1	0	Weinberg's
$aa \times AA$	$G_{aa} \times G_{AA} = G_{AA}G_{aa}$	0	1	0	approach
$Aa \times Aa$	$G_{Aa} \times G_{Aa} = G_{Aa}^{2}$	1⁄4	1/2	1⁄4	
$Aa \times aa$	$G_{Aa} \times G_{aa} = G_{Aa} G_{aa}$	0	1/2	1/2	
$aa \times Aa$	$G_{aa} \times G_{Aa} = G_{Aa} G_{aa}$	0	1/2	1/2	
$aa \times aa$	$G_{aa} \times G_{aa} = G_{aa}^{2}$	0	0	1	
Total Offspring		G'_{AA}	G'_{Aa}	G'_{aa}	

Mendelian probabilities of offenring (zvantes)

Summing zygotes over all mating types:

$$\begin{aligned} G'_{AA} &= G_{AA}{}^2 + \frac{1}{2} \left[2G_{AA}G_{Aa} \right] + \frac{1}{4}G_{Aa}{}^2 = \left[G_{AA} + \frac{1}{2}G_{Aa} \right]^2 = p^2 \\ G'_{Aa} &= \frac{1}{2} \left[2G_{AA}G_{Aa} \right] + 2G_{AA}G_{aa} + \frac{1}{2}G_{Aa}{}^2 + \frac{1}{2} \left[2G_{Aa}G_{aa} \right] = 2 \left[G_{AA} + \frac{1}{2}G_{Aa} \right] \left[G_{aa} + \frac{1}{2}G_{Aa} \right] = 2pq \\ G'_{aa} &= \frac{1}{4}G_{Aa}{}^2 + \frac{1}{2} \left[2G_{Aa}G_{aa} \right] + G_{aa}{}^2 = \left[G_{aa} + \frac{1}{2}G_{Aa} \right]^2 = q^2 \end{aligned}$$

Note: Female genotypes are indicated first in the mating pair, male genotypes second.

Alan R. Templeton. Population Genetics and Microevolutionary Theory, 2nd Edition (2021)

1st conclusion from HW

• In a randomly mating population, knowing the allele frequencies in one generation, we can calculate the genotype frequencies in the next generation!

P'= p² H'=2 pkg Q'= q²

Calculate the allele frequencies in the next generation, p' and q'

Next generation allele frequencies

In a randomly mating population, allele frequencies from generation to generation do not change!

> Alan R. Templeton. Population Genetics and Microevolutionary Theory, 2nd Edition (2021)

2nd conclusion from HW

- In a randomly mating population, allele frequencies from generation to generation do not change!
- This is an **equilibrium population**

p'= p Q'= q

Calculate the allele frequencies in the next generation, p' and q'

Example

Example

Application of the Hardy–Weinberg model to a sample of Pueblo Indians scored for their genotypes at the autosomal **MN blood group l**ocus.

> P'= p² H'=2 pkg

Alan R. Templeton. Population Genetics and Microevolutionary Theory, 2nd Edition (2021)

Hardy-Weinberg Law

- The most basic model in population genetics
 - When we have random reproduction, after one generation we can calculate the genotype frequencies of a population as a binomial function of the allele frequencies
 - If other evolutionary factors (e.g. selection) are absent, and reproduction remains random, then these frequencies do not change from generation to generation

Binomial development

- p²+2pq+q²= (p+q)²
- It means that with random reproduction, alleles A and a with frequencies p and q are randomly combined in pairs
 - Why every two?

Conditions for the validity of the HW theorem

- Diploid organism
- Sexual reproduction
- Non-overlapping generations
- Population size infinite
- Same allelic frequencies in males and females
- Random pairing of individuals (mixture)
- No Selection
- No influx of alleles into the population (immigration or mutation)

Conditions for the validity of the HW theorem

Understanding Mendel's and Hardy-Weinberg's laws

- The relationship (dominant or recessive) between the alleles does not matter
- For a population in Hardy-Weinberg equilibrium, there is no tendency for an allele to become extinct or dominant
- This ability to maintain genetic diversity is one of the most important features of Mendelian genetics in contrast to older theories of blended inheritance.

Genetic diversity

- Based on the HW law, genetic diversity has an inherent (mathematical) tendency to be conserved
- An equilibrium population does not change over time
 - Evolution, however, concerns changes in the genetic composition of populations
 - The equilibrium population is the "null" hypothesis of evolution
- By breaking the equilibrium population conditions one by one, we can study evolutionary forces at the genetic level!

More than 2 alleles

• Hardy Weinberg's law also applies in the case that we have 3 alleles (A, B, and C) with frequencies p, q, and r:

- $(p + q + r)^2 = p^2 + 2pq + q^2 + 2pr + 2qr + r^2$

• For 4 alleles (A, B, C, and D) with frequencies p, q, r, and s respectively are:

- $(p + q + r + s)^2 = p^2 + 2pq + q^2 + 2pr + 2qr + r^2 + 2ps + 2qs + 2rs + s^2$

• Generally: $P_{ii} = P_i^2$ $P_{ij} = 2p_ip_j$

The HW theorem for sex-linked genes

Sex-linked locus A (A,a), equal allelic frequencies between males and females, equal number of males and females:

		Male gametes - X		Male gametes - Y
		X ^A (p)	X ^a (Q)	
Females gametes	X ^A (p)	X ^A X ^A (p ²)	X ^A X ^a (pq)	X ^₄ Y (p)
	X ^a (Q)	X ^a X ^A (q.p.)	X ^a X ^a (q ²)	XªY (q)

Genotypic frequencies of females equal H-W frequencies, while males equal allele frequencies

• In some African population, 4% of the (equilibrium) population is born with a severe form of sickle cell disease. What percentage of the population (roughly) has the greatest susceptibility to contracting malaria?

• A microsatellite has five alleles that each occur at a frequency of 0.2. What percentage of the (equilibrium) population will be heterozygotes?

• A disease is caused by a recessive sex-linked gene. In a large (equilibrium) population where mating is random, the disease affects one man in 10. What is the frequency of affected women?

• An autosomal recessive disease has a carrier frequency of 1/50. What is the probability that the first child of a random couple will have the disease?

- In a sample of 990 individuals from a European population the following frequencies were found for the MN blood group system genotypes:
- 439 MM, 421 MN, 130 NN
 - What is the observed and what is the expected heterozygosity?

- You have sampled from a population in which you know that the frequency of the recessive homozygous genotype (aa) is 36%. Using this 36%, calculate the following:
 - the frequency of genotype "aa",
 - the frequency of the allele "a",
 - the frequency of the "A" allele,
 - the frequencies of the genotypes "AA" and "Aa" and the frequencies of the two possible phenotypes if "A" is dominant.

 If in an admixed population (equilibrium) the frequency of phenotype A (A dominant against recessive α) is 0.19, what is the frequency of heterozygous genotypes?

- The HALn recessive allele of the HAL gene (HALN, HALn) is responsible for the positive reaction of pigs to halothane. In a population of 1000 Large White pigs one in 400 pigs was found to react positively to halothane.
 - Estimate the number of normal pigs that are carriers of the recessive allele.

