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Abstract
The increasing demand for sustainable agricultural practices has driven a renewed interest in plant–microbiome interactions as a basis 
for the next “green revolution.” Central to these interactions are root-derived metabolites that act as mediators of microbial recruitment 
and function. Plants exude a chemically diverse array of compounds that influence the assembly, composition, and stability of the root 
microbiome. These metabolites can act as nutrients, chemical signals, or antimicrobial barriers, orchestrating beneficial relationships 
while defending against pathogenic threats. This review highlights the multifaceted role of plant metabolites in root microbiome 
assembly, focusing on their dynamic regulation by plant genotype, environmental conditions, and immune responses. We discuss the 
emerging concept of roots as metabolic architects of their associated microbiomes, wherein plant–metabolite–microbiome 
interactions coevolved alongside critical life-support systems such as immunity and nutrient acquisition. We propose that elucidating 
the mechanisms of metabolite-driven microbial selection can guide the development of future crops optimized for beneficial 
microbiome recruitment and enhanced resilience.
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From green revolution to the microbiome era
The green revolution of the 1960s, driven by synthetic fertilizers, 
pesticides, and improved crop varieties, increased the agricultural 
productivity of key crops by 40% to 50%. However, its environmen
tal toll has underscored the need for more sustainable strategies 
(Renaud et al. 2018). One promising alternative lies in harnessing 
the symbiotic relationship between plants and soil-inhabiting mi
crobes (Bakker et al. 2020; Banerjee and van der Heijden 2023). 
These microbes and their functional capacities are collectively re
ferred to as the soil microbiome (Berg et al. 2020). They play a cru
cial role in supporting plant nutrition and enhancing resistance to 
both biotic and abiotic stresses (Berendsen et al. 2012, 2018). 
Therefore, optimizing microbiome-based strategies has been pro
posed as the foundation for a potential “second green revolution,” 
one that aims to reconcile the dual goals of food security and en
vironmental sustainability.

The root–soil microbiome interface: 
gatekeeper of plant health
The soil microbiome comprises a vast array of organisms, includ
ing beneficial, commensal, and pathogenic microbes (Poppeliers 
et al. 2023). Its composition influences plant health and productiv
ity (Carrion et al. 2019; Spooren et al. 2024). In fact, using artificial 
intelligence approaches, variations in microbiome composition 
across agricultural fields have been shown to reliably predict 
plant health (Wei et al. 2019; Lutz et al. 2023; Song et al. 2025). 
Soil microbiomes provide over 40 functions relevant to ecosystem 
health (Banerjee and van der Heijden 2023). The microbiome thus 
acts as an extension of the plant’s own genetic repertoire, often 

referred to as the “second genome” (Henry et al. 2021) and is in
creasingly viewed as part of the holobiont: a host organism and 
its associated microbial community, which together may function 
as a unit of evolutionary selection (Theis et al. 2016).

Although plants can derive numerous benefits from microbial 
communities, they must also exert strict control over these asso
ciations to maintain microbial balance and prevent harmful dis
ruptions (Chen et al. 2020; Nakagami et al. 2024). The plant’s 
influence on the composition of the soil microbiome is referred 
to as the plant host-genotype effect (Box 1). This plant-driven se
lection process reduces microbial diversity as soil microbial com
munities approach the roots. Three sequential, spatially defined 
compartments are recognized as crucial to this selection process: 
the rhizosphere, the rhizoplane, and the endosphere (Box 1) 
(Reinhold-Hurek et al. 2015). The rhizosphere is rich with root exu
dates, including a variety of metabolites that influence the soil mi
crobiome by acting as chemoattractants, carbon or nutrient 
sources, antimicrobials, or chemical defense compounds 
(Chagas et al. 2018; Knudsen et al. 2018; Sasse et al. 2018; 
Pascale et al. 2020; Pang et al. 2021; Hong et al. 2022; Yu et al. 2022).

At the rhizoplane, microbes adhere to the root surface, en
countering root exudates and plant immune responses 
(Reinhold-Hurek et al. 2015). The endosphere is a highly selective 
environment that permits colonization by only a limited number 
of microbial taxa (Edwards et al. 2015). Structural barriers such as 
lignin and suberin, present in the rhizoplane and endosphere, can 
physically hinder microbial colonization of specific root zones 
(Froschel et al. 2021). The influence of the host genotype dimin
ishes with increasing distance from the roots (Bulgarelli et al. 
2013). Consequently, environmental factors exert a progressively 
greater influence farther from the root. These factors include 
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microbe-microbe interactions, soil type, pH, water content, nutrient 
availability, geographic location, agricultural practices, and the 
presence of contaminants (Yeoh et al. 2016; Uribe et al. 2022).

Root metabolites as selective forces 
in microbiome assembly
Plants are estimated to produce between 0.1 and 1 million metab
olites, more than any other kingdom of life (Fang et al. 2019). This 
extraordinary chemical diversity poses a significant challenge for 
mechanistically understanding how metabolites mediate root mi
crobiome assembly. The complexity arises in part from the highly 
dynamic and context-dependent nature of plant metabolic pro
files. Factors such as developmental stage, physiological status, 
and exposure to abiotic or biotic stresses can all influence metab
olite production (Chaparro et al. 2013; Vismans et al. 2022; 
Pantigoso et al. 2025). Root architecture further contributes by af
fecting both the synthesis and spatial patterns of metabolite exu
dation (McKay Fletcher et al. 2020). Exudation also varies along 
the root’s longitudinal axis (Loo et al. 2024) and across different 
root cell types (Froschel et al. 2021). Once released into the 

rhizosphere, metabolites differ in their stability and diffusion 
rates, which in turn shape their microbial impact (Kuzyakov and 
Razavi 2019). Despite these layers of complexity, the plant’s gen
otype ultimately constrains its metabolic capacity. Thus, while 
environmental and developmental factors modulate the metabo
lome in situ, its overall potential is genetically determined.

The composition of root exudates is highly diverse, encompassing 
a wide range of chemical classes that influence rhizosphere 
microbial communities. Exudates consist primarily of high- 
molecular-weight compounds, mainly polysaccharide mucilage 
and proteins, and a smaller but chemically diverse fraction of low- 
molecular-weight metabolites (Li et al. 2024). These low-molecular- 
weight compounds can be classified based on characteristics such as 
volatility or solubility (Kuzyakov and Razavi 2019), chemical struc
ture (Domingo-Fernandez et al. 2023), metabolic origin (primary vs 
secondary; Fernie et al. 2024), or ecological function, such as nutri
tion, signaling, or defense (Gasperini and Howe 2024).

Broadly, primary and secondary metabolites play distinct yet 
complementary roles in microbiome assembly. Primary metabo
lites, including sugars, amino acids, and organic acids, are essen
tial for plant growth and serve as key carbon and nutrient sources 

Box 1. Root zones and the host genotype effect. Plant roots exert a host genotype-dependent selective pressure on soil mi
crobial communities. The illustration provides a magnified view of the soil region influenced by plant roots, the rhizo
sphere. The plant root (left) features chemical and structural barriers that regulate interactions with the surrounding 
microbiome. Structural and chemical barriers (mainly secondary metabolites) can prevent microbes from entering the 
root tissues; therefore, only a small subset of soil microbes can establish on the root surface (the rhizoplane), and even 
fewer can enter the interior root tissues (the endosphere). Microbes positively selected by the plant root are depicted as 
blue cells in the figure. The root also modifies the rhizosphere microbiome (center) through the exudation of diverse me
tabolites, including primary metabolites that provide nutrients to the microbial community and secondary metabolites 
with selective antimicrobial properties, acting as chemical barriers. As a result, the microbiome composition in the rhizo
sphere differs from that of the bulk soil (right), depicted here as a higher proportion of blue microbes in the rhizosphere and 
greater presence of red microbes in the bulk soil. Created in BioRender: https://BioRender.com/1hmyyss.
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for microbes in the rhizosphere. Their exudation patterns influ
ence microbial abundance and activity, often favoring fast- 
growing, copiotrophic organisms (Lopez et al. 2023). Microbes ca
pable of metabolizing specific plant-derived carbon sources, such 
as inositol, are often among the most rhizosphere competent 
(O’Banion et al. 2023; Sánchez-Gil et al. 2023). Moreover, microbial 
preference for 1 carbon source can result in a beneficial microbe 
overgrowing deleterious ones and may also trigger microbial che
motaxis and biofilm formation (Rudrappa et al. 2008; Boubsi et al. 
2023). For example, the exudation of malic acid by Arabidopsis can 
specifically recruit the beneficial bacterium Bacillus subtilis FB17 
(Rudrappa et al. 2008). However, malic acid can also induce the 
production of effectors in pathogenic microbes (Cao et al. 2025). 
Consequently, plants must tightly regulate sugars levels in the 
apoplast to control bacterial growth (Nakagami et al. 2024).

In contrast, secondary metabolites, such as flavonoids, cou
marins, glucosinolates, benzoxazinoids, terpenes, saponins, alka
loids, and indole-derived compounds, are not directly involved in 
core metabolism but share overlapping functions in nutrient mo
bilization, microbial recruitment, signaling, and defense (Pascale 
et al. 2020; Jacoby et al. 2021; Rizaludin et al. 2021; Korenblum 
et al. 2022; Zhou et al. 2024). Due to their specificity, secondary 
metabolites contribute to genotype-dependent shaping of the 

root microbiome. The interplay between primary and secondary 
metabolite exudation forms the basis of a metabolite-mediated 
selection process that helps plants assemble beneficial microbial 
communities while defending against potential pathogens 
(Bisht et al. 2025).

Other plant traits, such as root morphology, gas exchange, and 
the release of root cap border cells, also impact microbial composi
tion (Reinhold-Hurek et al. 2015), though their influence is closely 
linked to metabolite production and distribution. For example, 
root architecture affects both the quantity and spatial pattern of 
metabolite exudation (Akatsuki and Makita 2020). Moreover, root 
hair mutants of barley have been shown to host a less diverse 
microbial community (Robertson-Albertyn et al. 2017), and 
Arabidopsis mutants lacking endodermal barriers exhibit altered 
colonization by the beneficial rhizobacterium Pseudomonas simiae 
WCS417 (Verbon et al. 2023). Root border cells, which show 
elevated secondary metabolic activity, are released in increased 
numbers during pathogen attack, likely shifting the abundance 
and composition of exuded metabolites (Sasse et al. 2018; 
Kranawetter and Sumner 2025). These examples highlight the cen
tral role of plant metabolites in structuring rhizosphere microbial 
communities and emphasize the dynamic feedback mechanisms 
governing plant-microbe interactions in the root environment.

A

B

Figure 1. Feedback mechanisms in the rhizosphere between microbes and the plant immune system. Plant defense signaling pathways are activated 
upon recognition of MAMP or PAMP by surface receptors on plant cells. A) Activation of these defense signaling pathways strengthens structural 
barriers and stimulates the production of antimicrobial secondary metabolites, thereby inhibiting pathogen proliferation. In healthy plants, 
commensal or beneficial root-associated microbes can modulate root immune responses—such as by lowering environmental pH—to promote their 
own colonization while preventing excessive immune activation and minimizing defense-growth trade-offs. B) Pathogenic microbes can interfere with 
plant defense signaling by releasing effector molecules that suppress host immunity and promote infection. This interference may alter the profile of 
defense-related metabolites synthesized and exuded by the plant, often leading to reduced production of antimicrobial compounds. However, these 
changes may also serve as a signal to the root microbiome, indicating that the plant is under attack and triggering a “cry for help” response that 
facilitates the recruitment of protective microbial communities. Created in BioRender https://BioRender.com/oaixjpd.
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The plant immune system: gatekeeper 
of microbial entry
The mechanisms by which plants recognize harmful from beneficial 
microbes in the soil ecosystem is one of the key topics in plant- 
microbe interactions research (Sasse et al. 2018; Thoms et al. 2021; 
Zhang and Kong 2022). The biological system responsible for micro
bial perception, signal transduction, and response is the plant im
mune system. From seed emergence to post-harvest, the plant 
immune system is continuously challenged by microbes. When 
plant cells initially come into contact with microbes, transmem
brane pattern recognition receptors recognize widely conserved mi
crobial epitopes known as microbe- or pathogen-associated 
molecular patterns (MAMPs/PAMPs; Fig. 1) (Jones et al. 2024). Upon 
recognition of a microbial MAMP, a broad spectrum of plant defense 
mechanisms is activated, such as the synthesis of defense-related 
hormones and antimicrobial secondary metabolites (phytoalexins), 
as well as the reinforcement of structural barriers through lignifica
tion and callose deposition (Millet et al. 2010). The coordinated acti
vation of this first line of defense is collectively referred to as 
pattern-triggered immunity (PTI). PTI plays a crucial role in deterring 
generalist pathogens, regulating commensal microbial populations, 
and preventing dysbiosis (Nakagami et al. 2024).

Since the rhizosphere is a microbial hotspot and therefore rich in 
MAMPs, tight regulation of root immune responses is essential to 
prevent constitutive activation of immunity and the resulting 
growth-defense tradeoffs. Importantly, microbes are not passive 
entities in this process. Microbe-microbe interactions, as well as 
the specific pool of microbial functions originally present in the 
bulk soil, play crucial roles in determining whether a plant will re
main healthy or develop disease (Carrion et al. 2019; Wei et al. 
2019; Spooren et al. 2024). Several studies have shown that up to 
40% of root-associated microbes can locally suppress host immune 
responses (Fig. 1A) (Yu et al. 2019; Ma et al. 2021; Teixeira et al. 2021; 
Ordon et al. 2025)—for example, by secreting metabolites such as 
gluconic acid, which lowers the local environmental pH (Yu et al. 
2019). This acidification impairs immune recognition, thereby facil
itating microbial colonization and supporting normal plant growth 
in the MAMP-rich environment. This highlights suppression of local 
root immunity as a crucial function of the root microbiome.

A second layer of plant immunity enables the recognition of spe
cialized microbial virulence factors, known as “effectors.” These ef
fectors are often used by pathogens to suppress plant defenses or 
manipulate defense hormone signaling. However, when effectors 
are detected by plant nucleotide-binding leucine rich repeat recep
tors, a defense response known as effector triggered immunity is 
activated (Lonjon et al. 2024). Interestingly, several beneficial mi
crobes also secrete effector-like molecules that modulate host im
munity to enable colonization without triggering full immune 
activation. Unlike effectors from pathogens, which typically sup
press host defenses to promote disease (Landry et al. 2020), effec
tors from symbiotic microbes facilitate mutualistic interactions 
by fine-tuning host responses (Zamioudis and Pieterse 2012).

Plant hormone signaling pathways are key regulators of de
fense responses activated during both PTI and effector triggered 
immunity. Among these, defense signaling metabolites salicylic 
acid (SA) and jasmonic acid (JA) serve as central regulators, medi
ators (often antagonistic) of plant immune responses (Pieterse 
et al. 2014; Aerts et al. 2021). SA biosynthesis and signaling are typ
ically induced by biotrophic pathogens and sap-feeding insects, 
whereas the JA response is predominantly activated by necrotr
ophs and insect herbivores (Aerts et al. 2021). This differential ac
tivation has important implications for pathogen success: 

biotrophs benefit from suppression of cell death and senescence, 
while necrotrophs may exploit pathways that promote these proc
esses (Kazan and Lyons 2014). A well-studied case is Pseudomonas 
syringae pv. tomato DC3000, which produces the effector corona
tine, a structural mimic of JA, with SA-suppression activity that 
facilitates infection (Xin and He 2013).

The defense-related hormones SA and JA have also been shown to 
influence microbiome assembly (Carvalhais et al. 2015; Lebeis et al. 
2015) by regulating the biosynthesis of secondary metabolites, such 
as glucosinolates (Kudjordjie et al. 2021), as well as through their own 
selective antimicrobial activity (Arenas-Castro et al. 2016; van der 
Meij et al. 2023). These hormone pathways differentially modulate 
the production of defense-related metabolites. For instance, glucosi
nolates, a class of sulfur-containing phytoalexins with antimicrobial 
properties, vary in composition depending on whether SA or JA sig
naling predominates (Mikkelsen et al. 2003). Such variation in anti
microbial profiles can influence microbial sensitivity and drive 
predictable shifts in microbiome composition (Fig. 1B) (Unger et al. 
2024). Changes in root exudation profiles of pathogen-infected 
plants have been shown to recruit specific protective microbiota to 
the root system, which can, in turn, induce systemic resistance 
against the invading pathogen (Berendsen et al. 2018; Yuan et al. 
2018; Rizaludin et al. 2021; Vismans et al. 2022; Goossens et al. 
2023). Thus, infected plants may issue a “cry for help” through the se
cretion of secondary metabolites that play a role in shaping and mo
bilizing their root-associated microbiome (Fig. 1B).

Interestingly, plant hormones can also directly affect microbial 
physiology. In Streptomyces, low concentrations of JA were found to 
enhance the production of the polyketide antibiotic actinorhodin, 
whereas higher concentrations were toxic (van der Meij et al. 2023). 
Additionally, SA was shown to be necessary for the growth of some 
Streptomyces and Actinobacteria strains on minimal medium 
(Lebeis et al. 2015). These examples illustrate that plant hormones 
can have a significant impact on members of the plant microbiome.

Besides the above-mentioned defense hormones and glucosi
nolates, several other classes of secondary metabolites involved 
in defense play key roles in shaping root-associated microbial 
communities by modulating both microbial recruitment and de
fense. Camalexin, the primary phytoalexin in Arabidopsis, is an 
indole-derived antimicrobial compound produced in response to 
pathogen challenge. While primarily studied for its role in de
fense, recent findings suggest that camalexin can influence rhizo
sphere microbial activity and nurture beneficial microbes 
(Koprivova et al. 2019). Similarly, terpenes, steroidal saponins, 
and alkaloids comprise compounds that can function as antimi
crobials or chemoattractants, thereby influencing microbial sur
vival and colonization (Huang et al. 2019; Nakayasu et al. 2021; 
Takamatsu et al. 2023; Zhou et al. 2024).

Specific groups of metabolites are often unique to or signifi
cantly enriched in certain plant families, and these compounds 
can strongly influence whether a plant can host or associate with 
a particular microbe (Wang et al. 2019). Examples of metabolite 
classes that are predominantly distributed in particular families 
include glucosinolates in the Brassicaceae, steroidal glycoalkaloids 
in the Solanaceae, and isoflavones in leguminous species (Wang 
et al. 2019). These lineage-specific compounds not only serve de
fensive roles but also contribute to shaping the rhizosphere micro
biome through a balance of antimicrobial defense and selective 
microbial recruitment, tailored to both environmental conditions 
and plant genotype. To overcome this chemical barrier of antimi
crobial root metabolites, specialized rhizosphere microbes have 
evolved the ability to metabolize or degrade these compounds. 
Gene clusters encoding the necessary enzymes have been 
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identified—for example, in a Sphingobium species that metabolizes 
specific benzoxaxinoids (Thoenen et al. 2024), in another 
Sphingobium species that degrades saponins (Nakayasu et al. 
2023), and in a Variovorax species that degrades isoflavones (Aoki 
et al. 2024).

Root metabolites as dual regulators of 
nutrient acquisition and microbiome 
assembly
Many plant-derived metabolites play a dual role in supporting plant 
health by both enhancing nutrient acquisition and shaping the com
position of root-associated microbial communities. In response to 
nutrient limitations, plants secrete specific metabolites that not 
only mobilize scarce nutrients but also act as selective agents for mi
crobial recruitment (Fig. 2). For example, under iron (Fe) deficiency, 
plant roots exude phenylpropanoid-derived coumarins such as frax
etin, redox-active metabolites that reduce insoluble ferric Fe (Fe3+) 
into its more bioavailable ferrous form (Fe2+) (Stringlis et al. 2019). 
Beyond their role in Fe mobilization, coumarins exhibit selective 
antimicrobial activity, contributing to the assembly of beneficial rhi
zosphere microbiomes (Stringlis et al. 2018; Vismans et al. 2022). 
Coumarin secretion also promotes the enrichment of microbial 

taxa capable of improving Fe availability through the production of 
Fe-chelating siderophores (Harbort et al. 2020) and microbial redox- 
active metabolites such as phenazines, which can also solubilize Fe 
(McRose et al. 2023). Interestingly, these compounds are adapted to 
different rhizosphere conditions: microbial phenazines are more ac
tive in acidic, low-oxygen niches, whereas plant-derived coumarins 
retain redox activity under oxic, mildly alkaline conditions. Root exu
dates such as glucose may further influence the redox potential and 
functional niche of these metabolites (McRose et al. 2023).

A similar dual function has been described for benzoxazinoids, a 
class of indole-derived metabolites primarily produced by grasses 
such as maize and wheat. In the rhizosphere, benzoxazinoids con
tribute to Fe mobilization by forming soluble Fe3+-benzoxazinoid 
complexes, which facilitate Fe uptake under limiting conditions 
(Hu et al. 2018a). In parallel, they exert selective antimicrobial ac
tivity, shaping root microbiome composition and promoting the 
enrichment of beneficial bacterial taxa involved in nutrient cycling 
and pathogen suppression (Hu et al. 2018b; Cotton et al. 2019; 
Gfeller et al. 2024). Through these combined effects, benzoxazi
noids act similarly to coumarins as key chemical mediators that 
align Fe foraging with the recruitment of a supportive microbiome.

Under phosphate (P) deficiency, plants exude specific metabo
lites, such as carotenoid-derived strigolactones, which stimulate 

A B C

Figure 2. Key root metabolites triggered by nutrient deficiency with roles in the recruitment and association with beneficial microbes. A) Under Fe 
deficiency, plants release a blend of exudates including benzoxazinoids in grasses and phenolics in other plant species. Among the phenolics, 
coumarins have selective antimicrobial properties, shaping the root microbiome—for example, by inhibiting specific pathogenic microbes while 
minimally affecting growth of various beneficial rhizobacteria that support Fe mobilization, such as microbes with siderophore production traits. 
B) During P limitation, plants secrete strigolactones that can specifically attract AMF, which assist in P acquisition and form associations with 
phosphate-solubilizing microbes (PSM). C) In N-limited conditions, plants also exude strigolactones and, additionally, flavones and isoflavones. 
Flavones attract bacteria from the family Oxalobacteraceae, which support N uptake, and both flavones and isoflavones mediate symbiosis with 
Rhizobia depending on the legume species, leading to atmospheric N fixation for the plant. Mycorrhiza can also cooperate with microbes that can aid 
nitrogen uptake. Created in BioRender: https://BioRender.com/jjhiqh0.
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the recruitment and colonization of beneficial microbes involved in P 
acquisition. Strigolactones promote the growth and metabolic acti
vation of arbuscular mycorrhizal fungi (AMF), whose hyphal net
works extend the functional root surface and facilitate P uptake 
(Gutjahr and Parniske 2013; Waters et al. 2017). Although AMF them
selves have limited capacity to solubilize organic phosphate, they 
often form synergistic partnerships with P-solubilizing bacteria 
that colonize their hyphae and secrete phosphatases and organic 
acids to mobilize unavailable P sources (Nacoon et al. 2020). Also 
AMF-hyphae-colonizing bacteria that enhance nitrogen (N) uptake 
have been shown to support AMF-mediated promotion of plant 
growth (Zhang et al. 2024). In non-mycorrhizal species such as 
Arabidopsis, endophytic fungi like Colletotrichum tofieldiae and 
Serendipita indica contribute to P acquisition by inducing host phos
phate transporters or improving P-use efficiency (Hiruma et al. 2016).

Under N deficiency, plants similarly adjust root exudation to 
promote associations with beneficial microbes that support N ac
quisition. In legumes, low N conditions trigger enhanced exuda
tion of flavonoids such as flavones and isoflavones, which 
induce the expression of nodulation (nod) genes in symbiotic rhi
zobia, leading to the formation of nitrogen-fixing root nodules 
(Poole et al. 2018; Fujimatsu et al. 2024). In non-legumes such as 
maize, N stress leads to the exudation of specific flavones that en
rich for Oxalobacteraceae, a bacterial family associated with im
proved N uptake and lateral root development (Yu et al. 2021). 
Additional microbial partners include free-living diazotrophs 
like Azospirillum, Azotobacter, and Xanthobacter, which enhance 
plant growth and N-use efficiency (Liu et al. 2017; Banik et al. 
2019; Zeffa et al. 2019). Other beneficial microbes, including 
AMF and beneficial endophytes like S. indica and Trichoderma 
spp., also support N nutrition by stimulating nitrate transporter 
expression or enhancing root function (Vahabi et al. 2015; 
Silletti et al. 2021).

Overall, these coordinated responses illustrate how root exu
dates help align microbial recruitment with nutrient needs, high
lighting the dual role of exudates in nutrient acquisition and 
microbiome assembly.

Concluding remarks
As global agriculture faces the dual challenge of improving crop 
productivity and reducing reliance on unsustainable chemical 
inputs, harnessing the potential of plant traits and microbiota 
offers a promising path forward. This review highlights how 
plant–metabolite–microbiome interactions have coevolved 
with essential life-support systems such as immunity and nu
trient acquisition. Plants use defense-related metabolites to re
cruit specific beneficial microbiota that help mitigate biotic 
stress, and they dynamically respond to nutrient limitations 
by exuding metabolites not only to mobilize scarce nutrients 
but also to attract beneficial microbial partners that alleviate 
nutrient stress.

Looking ahead, a deeper understanding of plant–microbiome 
interactions during biotic stress and abiotic stresses such as nu
trient limitation will be essential for developing sustainable, 
microbiome-informed strategies to enhance plant health and nu
trition (see Outstanding questions box). These strategies include 
plant-driven approaches, such as breeding for traits that enhance 
specific root exudations and beneficial microbe recruitment, as 
well as microbe-driven solutions, including the development of 
designed microbial consortia or engineered microbial strains 
with improved functional capacities.

Future efforts should prioritize the translation of insights from 
model species to crops, the integration of multi-omics data with 
artificial intelligence and machine learning tools, and the valida
tion of innovations under realistic field conditions. Past parallel 
metabolome-microbiome experiments have been instrumental 
in uncovering beneficial plant–metabolite–microbiome interac
tions (Stringlis et al. 2018; Zhalnina et al. 2018; Jacoby et al. 
2021; Pang et al. 2021; Csorba et al. 2022; Hong et al. 2022). 
Next-generation spatial omics technologies are now pushing res
olution from whole-root averages to micrometer-scale niches. For 
instance, spatial metatranscriptomics applied to outdoor-grown 
Arabidopsis leaves revealed bacterial and fungal “hotspots” and 
linked them to localized induction of plant defense genes. 
Spatial mass spectrometry imaging platforms have also been de
veloped to map the distribution of root exudates and microbial 
metabolites directly in the rhizosphere, revealing fine-scale chem
ical gradients and plant–microbe interfaces (Saarenpää et al. 
2024; Veličković et al. 2024).

Deep genome and metagenome sequencing underpin 
constraint-based community metabolic models. Successfully ap
plied in human microbiome studies, for example, to predict micro
bial drug transformations in personalized medicine, these models 
are now being adopted in plant microbiome research. They are 
helping to elucidate how carbon partitioning and cross-feeding 
shape microbiome assembly, with broad potential applications 
(Heinken et al. 2023; Schäfer et al. 2023; Blonde et al. 2025). 
Complementing these flux-based models, Li et al. (2025) introduced 
RhizoSMASH, a genome-synteny algorithm that mines bacterial ge
nomes for catabolic gene clusters, enabling the prediction of which 
strains can catabolize specific root exudates and thrive in the 
rhizosphere.

To move from correlation to causation, future studies should 
generate co-registered multi-omics datasets from the exact 
same samples and integrate them with causal-inference ML 
frameworks capable of disentangling directional plant–microbe 
feedbacks (Xu et al. 2021). The rapid development of AI and ML of
fers significant opportunities, as plant microbiome-based predic
tive models are beginning to show strong potential for forecasting 
plant performance from large microbiome datasets (Wei et al. 
2019; Kang et al. 2022; Lutz et al. 2023; Song et al. 2025). By inte
grating these technological advances with plant genetics, micro
bial ecology, and biotechnology, we can design resilient 
agroecosystems that reduce reliance on fertilizers while improv
ing crop nutrition and health.
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Advances Box

• The plant microbiome has emerged as a foundation for a 
potential “second green revolution.”

• Root-derived metabolites serve as key mediators in the 
recruitment and functional activation of beneficial 
microbes.

• Plant defense-related metabolites play crucial roles in 
deterring harmful pathogens while supporting the es
tablishment of beneficial microbiota.

• During nutrient deprivation, root-secreted metabolites 
recruit microbial partners that assist in nutrient 
acquisition.

• Artificial intelligence has emerged as a powerful tool to 
harness the complexity of plant–microbiome interac
tions and enhance crop resilience.

Outstanding Questions Box

• The effects of specific plant-derived metabolites on mi
crobiome assembly and function are rapidly being un
covered, but how do these metabolite functions 
manifest within the metabolically and microbially com
plex environment of the soil–root interface?

• What roles do specific metabolites play in recruiting pro
tective microbiota under biotic or abiotic stress 
conditions?

• How do individual microbial taxa functionally respond 
to stress-induced root-secreted metabolites—for exam
ple, by facilitating nutrient uptake or enhancing plant 
resistance to biotic or abiotic stress?

• What are the molecular mechanisms that enable mi
crobes to tolerate selective antimicrobial metabolites?

• How can we leverage insights into the role of plant- 
derived metabolites in shaping beneficial root micro
biomes to develop future microbiome-optimized crops?
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