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Abstract

The increasing demand for sustainable agricultural practices has driven a renewed interest in plant-microbiome interactions as a basis
for the next “green revolution.” Central to these interactions are root-derived metabolites that act as mediators of microbial recruitment
and function. Plants exude a chemically diverse array of compounds that influence the assembly, composition, and stability of the root
microbiome. These metabolites can act as nutrients, chemical signals, or antimicrobial barriers, orchestrating beneficial relationships
while defending against pathogenic threats. This review highlights the multifaceted role of plant metabolites in root microbiome
assembly, focusing on their dynamic regulation by plant genotype, environmental conditions, and immune responses. We discuss the
emerging concept of roots as metabolic architects of their associated microbiomes, wherein plant-metabolite-microbiome
interactions coevolved alongside critical life-support systems such as immunity and nutrient acquisition. We propose that elucidating
the mechanisms of metabolite-driven microbial selection can guide the development of future crops optimized for beneficial

microbiome recruitment and enhanced resilience.

From green revolution to the microbiome era

The green revolution of the 1960s, driven by synthetic fertilizers,
pesticides, and improved crop varieties, increased the agricultural
productivity of key crops by 40% to 50%. However, its environmen-
tal toll has underscored the need for more sustainable strategies
(Renaud et al. 2018). One promising alternative lies in harnessing
the symbiotic relationship between plants and soil-inhabiting mi-
crobes (Bakker et al. 2020; Banerjee and van der Heijden 2023).
These microbes and their functional capacities are collectively re-
ferred to as the soil microbiome (Berg et al. 2020). They play a cru-
cial role in supporting plant nutrition and enhancing resistance to
both biotic and abiotic stresses (Berendsen et al. 2012, 2018).
Therefore, optimizing microbiome-based strategies has been pro-
posed as the foundation for a potential “second green revolution,”
one that aims to reconcile the dual goals of food security and en-
vironmental sustainability.

The root-soil microbiome interface:
gatekeeper of plant health

The soil microbiome comprises a vast array of organisms, includ-
ing beneficial, commensal, and pathogenic microbes (Poppeliers
etal. 2023). Its composition influences plant health and productiv-
ity (Carrion et al. 2019; Spooren et al. 2024). In fact, using artificial
intelligence approaches, variations in microbiome composition
across agricultural fields have been shown to reliably predict
plant health (Wei et al. 2019; Lutz et al. 2023; Song et al. 2025).
Soil microbiomes provide over 40 functions relevant to ecosystem
health (Banerjee and van der Heijden 2023). The microbiome thus
acts as an extension of the plant’s own genetic repertoire, often

referred to as the “second genome” (Henry et al. 2021) and is in-
creasingly viewed as part of the holobiont: a host organism and
its associated microbial community, which together may function
as a unit of evolutionary selection (Theis et al. 2016).

Although plants can derive numerous benefits from microbial
communities, they must also exert strict control over these asso-
clations to maintain microbial balance and prevent harmful dis-
ruptions (Chen et al. 2020; Nakagami et al. 2024). The plant’s
influence on the composition of the soil microbiome is referred
to as the plant host-genotype effect (Box 1). This plant-driven se-
lection process reduces microbial diversity as soil microbial com-
munities approach the roots. Three sequential, spatially defined
compartments are recognized as crucial to this selection process:
the rhizosphere, the rhizoplane, and the endosphere (Box 1)
(Reinhold-Hurek et al. 2015). The rhizosphere is rich with root exu-
dates, including a variety of metabolites that influence the soil mi-
crobiome by acting as chemoattractants, carbon or nutrient
sources, antimicrobials, or chemical defense compounds
(Chagas et al. 2018; Knudsen et al. 2018; Sasse et al. 2018;
Pascaleetal. 2020; Pangetal. 2021; Hong et al. 2022; Yu et al. 2022).

At the rhizoplane, microbes adhere to the root surface, en-
countering root exudates and plant immune responses
(Reinhold-Hurek et al. 2015). The endosphere is a highly selective
environment that permits colonization by only a limited number
of microbial taxa (Edwards et al. 2015). Structural barriers such as
lignin and suberin, present in the rhizoplane and endosphere, can
physically hinder microbial colonization of specific root zones
(Froschel et al. 2021). The influence of the host genotype dimin-
ishes with increasing distance from the roots (Bulgarelli et al.
2013). Consequently, environmental factors exert a progressively
greater influence farther from the root. These factors include
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Box 1. Root zones and the host genotype effect. Plant roots exert a host genotype-dependent selective pressure on soil mi-
crobial communities. The illustration provides a magnified view of the soil region influenced by plant roots, the rhizo-
sphere. The plant root (left) features chemical and structural barriers that regulate interactions with the surrounding
microbiome. Structural and chemical barriers (mainly secondary metabolites) can prevent microbes from entering the
root tissues; therefore, only a small subset of soil microbes can establish on the root surface (the rhizoplane), and even
fewer can enter the interior root tissues (the endosphere). Microbes positively selected by the plant root are depicted as
blue cells in the figure. The root also modifies the rhizosphere microbiome (center) through the exudation of diverse me-
tabolites, including primary metabolites that provide nutrients to the microbial community and secondary metabolites
with selective antimicrobial properties, acting as chemical barriers. As a result, the microbiome composition in the rhizo-
sphere differs from that of the bulk soil (right), depicted here as a higher proportion of blue microbes in the rhizosphere and
greater presence of red microbes in the bulk soil. Created in BioRender: https:/BioRender.com/lThmyyss.
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microbe-microbe interactions, soil type, pH, water content, nutrient
availability, geographic location, agricultural practices, and the
presence of contaminants (Yeoh et al. 2016; Uribe et al. 2022).

Root metabolites as selective forces
in microbiome assembly

Plants are estimated to produce between 0.1 and 1 million metab-
olites, more than any other kingdom of life (Fang et al. 2019). This
extraordinary chemical diversity poses a significant challenge for
mechanistically understanding how metabolites mediate root mi-
crobiome assembly. The complexity arises in part from the highly
dynamic and context-dependent nature of plant metabolic pro-
files. Factors such as developmental stage, physiological status,
and exposure to abiotic or biotic stresses can all influence metab-
olite production (Chaparro et al. 2013; Vismans et al. 2022;
Pantigoso et al. 2025). Root architecture further contributes by af-
fecting both the synthesis and spatial patterns of metabolite exu-
dation (McKay Fletcher et al. 2020). Exudation also varies along
the root’s longitudinal axis (Loo et al. 2024) and across different
root cell types (Froschel et al. 2021). Once released into the

rhizosphere, metabolites differ in their stability and diffusion
rates, which in turn shape their microbial impact (Kuzyakov and
Razavi 2019). Despite these layers of complexity, the plant’s gen-
otype ultimately constrains its metabolic capacity. Thus, while
environmental and developmental factors modulate the metabo-
lome in situ, its overall potential is genetically determined.

The composition of root exudates is highly diverse, encompassing
a wide range of chemical classes that influence rhizosphere
microbial communities. Exudates consist primarily of high-
molecular-weight compounds, mainly polysaccharide mucilage
and proteins, and a smaller but chemically diverse fraction of low-
molecular-weight metabolites (Li et al. 2024). These low-molecular-
weight compounds can be classified based on characteristics such as
volatility or solubility (Kuzyakov and Razavi 2019), chemical struc-
ture (Domingo-Fernandez et al. 2023), metabolic origin (primary vs
secondary; Fernie et al. 2024), or ecological function, such as nutri-
tion, signaling, or defense (Gasperini and Howe 2024).

Broadly, primary and secondary metabolites play distinct yet
complementary roles in microbiome assembly. Primary metabo-
lites, including sugars, amino acids, and organic acids, are essen-
tial for plant growth and serve as key carbon and nutrient sources
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Figure 1. Feedback mechanisms in the rhizosphere between microbes and the plant immune system. Plant defense signaling pathways are activated
upon recognition of MAMP or PAMP by surface receptors on plant cells. A) Activation of these defense signaling pathways strengthens structural
barriers and stimulates the production of antimicrobial secondary metabolites, thereby inhibiting pathogen proliferation. In healthy plants,
commensal or beneficial root-associated microbes can modulate root immune responses—such as by lowering environmental pH—to promote their
own colonization while preventing excessive immune activation and minimizing defense-growth trade-offs. B) Pathogenic microbes can interfere with
plant defense signaling by releasing effector molecules that suppress host immunity and promote infection. This interference may alter the profile of
defense-related metabolites synthesized and exuded by the plant, often leading to reduced production of antimicrobial compounds. However, these
changes may also serve as a signal to the root microbiome, indicating that the plant is under attack and triggering a “cry for help” response that
facilitates the recruitment of protective microbial communities. Created in BioRender https:/BioRender.com/oaixjpd.

for microbes in the rhizosphere. Their exudation patterns influ-
ence microbial abundance and activity, often favoring fast-
growing, copiotrophic organisms (Lopez et al. 2023). Microbes ca-
pable of metabolizing specific plant-derived carbon sources, such
as inositol, are often among the most rhizosphere competent
(O’Banion et al. 2023; Sanchez-Gil et al. 2023). Moreover, microbial
preference for 1 carbon source can result in a beneficial microbe
overgrowing deleterious ones and may also trigger microbial che-
motaxis and biofilm formation (Rudrappa et al. 2008; Boubsi et al.
2023). For example, the exudation of malic acid by Arabidopsis can
specifically recruit the beneficial bacterium Bacillus subtilis FB17
(Rudrappa et al. 2008). However, malic acid can also induce the
production of effectors in pathogenic microbes (Cao et al. 2025).
Consequently, plants must tightly regulate sugars levels in the
apoplast to control bacterial growth (Nakagami et al. 2024).

In contrast, secondary metabolites, such as flavonoids, cou-
marins, glucosinolates, benzoxazinoids, terpenes, saponins, alka-
loids, and indole-derived compounds, are not directly involved in
core metabolism but share overlapping functions in nutrient mo-
bilization, microbial recruitment, signaling, and defense (Pascale
et al. 2020; Jacoby et al. 2021; Rizaludin et al. 2021; Korenblum
et al. 2022; Zhou et al. 2024). Due to their specificity, secondary
metabolites contribute to genotype-dependent shaping of the

root microbiome. The interplay between primary and secondary
metabolite exudation forms the basis of a metabolite-mediated
selection process that helps plants assemble beneficial microbial
communities while defending against potential pathogens
(Bisht et al. 2025).

Other plant traits, such as root morphology, gas exchange, and
the release of root cap border cells, also impact microbial composi-
tion (Reinhold-Hurek et al. 2015), though their influence is closely
linked to metabolite production and distribution. For example,
root architecture affects both the quantity and spatial pattern of
metabolite exudation (Akatsuki and Makita 2020). Moreover, root
hair mutants of barley have been shown to host a less diverse
microbial community (Robertson-Albertyn et al. 2017), and
Arabidopsis mutants lacking endodermal barriers exhibit altered
colonization by the beneficial rhizobacterium Pseudomonas simiae
WCS417 (Verbon et al. 2023). Root border cells, which show
elevated secondary metabolic activity, are released in increased
numbers during pathogen attack, likely shifting the abundance
and composition of exuded metabolites (Sasse et al. 2018;
Kranawetter and Sumner 2025). These examples highlight the cen-
tral role of plant metabolites in structuring rhizosphere microbial
communities and emphasize the dynamic feedback mechanisms
governing plant-microbe interactions in the root environment.
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The plant immune system: gatekeeper
of microbial entry

The mechanisms by which plants recognize harmful from beneficial
microbes in the soil ecosystem is one of the key topics in plant-
microbe interactions research (Sasse et al. 2018; Thoms et al. 2021;
Zhang and Kong 2022). The biological system responsible for micro-
bial perception, signal transduction, and response is the plant im-
mune system. From seed emergence to post-harvest, the plant
immune system is continuously challenged by microbes. When
plant cells initially come into contact with microbes, transmem-
brane pattern recognition receptors recognize widely conserved mi-
crobial epitopes known as microbe- or pathogen-associated
molecular patterns (MAMPs/PAMPs; Fig. 1) (Jones et al. 2024). Upon
recognition of a microbial MAMP, a broad spectrum of plant defense
mechanisms is activated, such as the synthesis of defense-related
hormones and antimicrobial secondary metabolites (phytoalexins),
as well as the reinforcement of structural barriers through lignifica-
tion and callose deposition (Millet et al. 2010). The coordinated acti-
vation of this first line of defense is collectively referred to as
pattern-triggered immunity (PTI). PTIplays a crucial role in deterring
generalist pathogens, regulating commensal microbial populations,
and preventing dysbiosis (Nakagami et al. 2024).

Since the rhizosphereis a microbial hotspot and thereforerich in
MAMPs, tight regulation of root immune responses is essential to
prevent constitutive activation of immunity and the resulting
growth-defense tradeoffs. Importantly, microbes are not passive
entities in this process. Microbe-microbe interactions, as well as
the specific pool of microbial functions originally present in the
bulk soil, play crucial roles in determining whether a plant will re-
main healthy or develop disease (Carrion et al. 2019; Wei et al.
2019; Spooren et al. 2024). Several studies have shown that up to
40% of root-associated microbes can locally suppress host immune
responses (Fig. 1A) (Yuetal. 2019; Ma etal. 2021; Teixeira et al. 2021;
Ordon et al. 2025)—for example, by secreting metabolites such as
gluconic acid, which lowers the local environmental pH (Yu et al.
2019). This acidification impairs immune recognition, thereby facil-
itating microbial colonization and supporting normal plant growth
in the MAMP-rich environment. This highlights suppression of local
root immunity as a crucial function of the root microbiome.

Asecond layer of plantimmunity enables the recognition of spe-
cialized microbial virulence factors, known as “effectors.” These ef-
fectors are often used by pathogens to suppress plant defenses or
manipulate defense hormone signaling. However, when effectors
are detected by plant nucleotide-binding leucine rich repeat recep-
tors, a defense response known as effector triggered immunity is
activated (Lonjon et al. 2024). Interestingly, several beneficial mi-
crobes also secrete effector-like molecules that modulate host im-
munity to enable colonization without triggering full immune
activation. Unlike effectors from pathogens, which typically sup-
press host defenses to promote disease (Landry et al. 2020), effec-
tors from symbiotic microbes facilitate mutualistic interactions
by fine-tuning host responses (Zamioudis and Pieterse 2012).

Plant hormone signaling pathways are key regulators of de-
fense responses activated during both PTI and effector triggered
immunity. Among these, defense signaling metabolites salicylic
acid (SA) and jasmonic acid (JA) serve as central regulators, medi-
ators (often antagonistic) of plant immune responses (Pieterse
etal. 2014; Aerts et al. 2021). SA biosynthesis and signaling are typ-
ically induced by biotrophic pathogens and sap-feeding insects,
whereas the JA response is predominantly activated by necrotr-
ophs and insect herbivores (Aerts et al. 2021). This differential ac-
tivation has important implications for pathogen success:

biotrophs benefit from suppression of cell death and senescence,
while necrotrophs may exploit pathways that promote these proc-
esses (Kazan and Lyons 2014). A well-studied case is Pseudomonas
syringae pv. tomato DC3000, which produces the effector corona-
tine, a structural mimic of JA, with SA-suppression activity that
facilitates infection (Xin and He 2013).

The defense-related hormones SA and JA have alsobeen shown to
influence microbiome assembly (Carvalhais et al. 2015; Lebeis et al.
2015) by regulating the biosynthesis of secondary metabolites, such
asglucosinolates (Kudjordjie et al. 2021), as well as through their own
selective antimicrobial activity (Arenas-Castro et al. 2016; van der
Meij et al. 2023). These hormone pathways differentially modulate
the production of defense-related metabolites. For instance, glucosi-
nolates, a class of sulfur-containing phytoalexins with antimicrobial
properties, vary in composition depending on whether SA or JA sig-
naling predominates (Mikkelsen et al. 2003). Such variation in anti-
microbial profiles can influence microbial sensitivity and drive
predictable shifts in microbiome composition (Fig. 1B) (Unger et al.
2024). Changes in root exudation profiles of pathogen-infected
plants have been shown to recruit specific protective microbiota to
the root system, which can, in turn, induce systemic resistance
against the invading pathogen (Berendsen et al. 2018; Yuan et al.
2018; Rizaludin et al. 2021; Vismans et al. 2022; Goossens et al.
2023). Thus, infected plants mayissue a “cry for help” through the se-
cretion of secondary metabolites that play a role in shaping and mo-
bilizing their root-associated microbiome (Fig. 1B).

Interestingly, plant hormones can also directly affect microbial
physiology. In Streptomyces, low concentrations of JA were found to
enhance the production of the polyketide antibiotic actinorhodin,
whereas higher concentrations were toxic (van der Mejj et al. 2023).
Additionally, SA was shown to be necessary for the growth of some
Streptomyces and Actinobacteria strains on minimal medium
(Lebeis et al. 2015). These examples illustrate that plant hormones
can have a significant impact on members of the plant microbiome.

Besides the above-mentioned defense hormones and glucosi-
nolates, several other classes of secondary metabolites involved
in defense play key roles in shaping root-associated microbial
communities by modulating both microbial recruitment and de-
fense. Camalexin, the primary phytoalexin in Arabidopsis, is an
indole-derived antimicrobial compound produced in response to
pathogen challenge. While primarily studied for its role in de-
fense, recent findings suggest that camalexin can influence rhizo-
sphere microbial activity and nurture beneficial microbes
(Koprivova et al. 2019). Similarly, terpenes, steroidal saponins,
and alkaloids comprise compounds that can function as antimi-
crobials or chemoattractants, thereby influencing microbial sur-
vival and colonization (Huang et al. 2019; Nakayasu et al. 2021;
Takamatsu et al. 2023; Zhou et al. 2024).

Specific groups of metabolites are often unique to or signifi-
cantly enriched in certain plant families, and these compounds
can strongly influence whether a plant can host or associate with
a particular microbe (Wang et al. 2019). Examples of metabolite
classes that are predominantly distributed in particular families
include glucosinolates in the Brassicaceae, steroidal glycoalkaloids
in the Solanaceae, and isoflavones in leguminous species (Wang
et al. 2019). These lineage-specific compounds not only serve de-
fensive roles but also contribute to shaping the rhizosphere micro-
biome through a balance of antimicrobial defense and selective
microbial recruitment, tailored to both environmental conditions
and plant genotype. To overcome this chemical barrier of antimi-
crobial root metabolites, specialized rhizosphere microbes have
evolved the ability to metabolize or degrade these compounds.
Gene clusters encoding the necessary enzymes have been
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Figure 2. Key root metabolites triggered by nutrient deficiency with roles in the recruitment and association with beneficial microbes. A) Under Fe
deficiency, plants release a blend of exudates including benzoxazinoids in grasses and phenolics in other plant species. Among the phenolics,
coumarins have selective antimicrobial properties, shaping the root microbiome—for example, by inhibiting specific pathogenic microbes while
minimally affecting growth of various beneficial rhizobacteria that support Fe mobilization, such as microbes with siderophore production traits.

B) During P limitation, plants secrete strigolactones that can specifically attract AMF, which assist in P acquisition and form associations with
phosphate-solubilizing microbes (PSM). C) In N-limited conditions, plants also exude strigolactones and, additionally, flavones and isoflavones.
Flavones attract bacteria from the family Oxalobacteraceae, which support N uptake, and both flavones and isoflavones mediate symbiosis with
Rhizobia depending on the legume species, leading to atmospheric N fixation for the plant. Mycorrhiza can also cooperate with microbes that can aid

nitrogen uptake. Created in BioRender: https://BioRender.com/jjhigh0.

identified—for example, in a Sphingobium species that metabolizes
specific benzoxaxinoids (Thoenen et al. 2024), in another
Sphingobium species that degrades saponins (Nakayasu et al.
2023), and in a Variovorax species that degrades isoflavones (Aoki
et al. 2024).

Root metabolites as dual regulators of
nutrient acquisition and microbiome
assembly

Many plant-derived metabolites play a dual role in supporting plant
health by both enhancing nutrient acquisition and shaping the com-
position of root-associated microbial communities. In response to
nutrient limitations, plants secrete specific metabolites that not
only mobilize scarce nutrients but also act as selective agents for mi-
crobial recruitment (Fig. 2). For example, under iron (Fe) deficiency,
plantroots exude phenylpropanoid-derived coumarins such as frax-
etin, redox-active metabolites that reduce insoluble ferric Fe (Fe*")
into its more bioavailable ferrous form (Fe®*) (Stringlis et al. 2019).
Beyond their role in Fe mobilization, coumarins exhibit selective
antimicrobial activity, contributing to the assembly of beneficial rhi-
zosphere microbiomes (Stringlis et al. 2018; Vismans et al. 2022).
Coumarin secretion also promotes the enrichment of microbial

taxa capable of improving Fe availability through the production of
Fe-chelating siderophores (Harbort et al. 2020) and microbial redox-
active metabolites such as phenazines, which can also solubilize Fe
(McRose et al. 2023). Interestingly, these compounds are adapted to
different rhizosphere conditions: microbial phenazines are more ac-
tive in acidic, low-oxygen niches, whereas plant-derived coumarins
retainredox activity under oxic, mildly alkaline conditions. Root exu-
dates such as glucose may further influence the redox potential and
functional niche of these metabolites (McRose et al. 2023).

A similar dual function has been described for benzoxazinoids, a
class of indole-derived metabolites primarily produced by grasses
such as maize and wheat. In the rhizosphere, benzoxazinoids con-
tribute to Fe mobilization by forming soluble Fe**-benzoxazinoid
complexes, which facilitate Fe uptake under limiting conditions
(Hu et al. 2018a). In parallel, they exert selective antimicrobial ac-
tivity, shaping root microbiome composition and promoting the
enrichment of beneficial bacterial taxa involved in nutrient cycling
and pathogen suppression (Hu et al. 2018b; Cotton et al. 2019;
Gfeller et al. 2024). Through these combined effects, benzoxazi-
noids act similarly to coumarins as key chemical mediators that
align Fe foraging with the recruitment of a supportive microbiome.

Under phosphate (P) deficiency, plants exude specific metabo-
lites, such as carotenoid-derived strigolactones, which stimulate
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therecruitmentand colonization of beneficial microbes involvedin P
acquisition. Strigolactones promote the growth and metabolic acti-
vation of arbuscular mycorrhizal fungi (AMF), whose hyphal net-
works extend the functional root surface and facilitate P uptake
(Gutjahr and Parniske 2013; Waters et al. 2017). Although AMF them-
selves have limited capacity to solubilize organic phosphate, they
often form synergistic partnerships with P-solubilizing bacteria
that colonize their hyphae and secrete phosphatases and organic
acids to mobilize unavailable P sources (Nacoon et al. 2020). Also
AMF-hyphae-colonizing bacteria that enhance nitrogen (N) uptake
have been shown to support AMF-mediated promotion of plant
growth (Zhang et al. 2024). In non-mycorrhizal species such as
Arabidopsis, endophytic fungi like Colletotrichum tofieldide and
Serendipita indica contribute to P acquisition by inducing host phos-
phate transporters or improving P-use efficiency (Hiruma et al. 2016).

Under N deficiency, plants similarly adjust root exudation to
promote associations with beneficial microbes that support N ac-
quisition. In legumes, low N conditions trigger enhanced exuda-
tion of flavonoids such as flavones and isoflavones, which
induce the expression of nodulation (nod) genes in symbiotic rhi-
zobia, leading to the formation of nitrogen-fixing root nodules
(Poole et al. 2018; Fujimatsu et al. 2024). In non-legumes such as
maize, N stress leads to the exudation of specific flavones that en-
rich for Oxalobacteraceae, a bacterial family associated with im-
proved N uptake and lateral root development (Yu et al. 2021).
Additional microbial partners include free-living diazotrophs
like Azospirillum, Azotobacter, and Xanthobacter, which enhance
plant growth and N-use efficiency (Liu et al. 2017; Banik et al.
2019; Zeffa et al. 2019). Other beneficial microbes, including
AMF and beneficial endophytes like S. indica and Trichoderma
spp., also support N nutrition by stimulating nitrate transporter
expression or enhancing root function (Vahabi et al. 2015;
Silletti et al. 2021).

Overall, these coordinated responses illustrate how root exu-
dates help align microbial recruitment with nutrient needs, high-
lighting the dual role of exudates in nutrient acquisition and
microbiome assembly.

Concluding remarks

As global agriculture faces the dual challenge of improving crop
productivity and reducing reliance on unsustainable chemical
inputs, harnessing the potential of plant traits and microbiota
offers a promising path forward. This review highlights how
plant-metabolite-microbiome interactions have coevolved
with essential life-support systems such as immunity and nu-
trient acquisition. Plants use defense-related metabolites to re-
cruit specific beneficial microbiota that help mitigate biotic
stress, and they dynamically respond to nutrient limitations
by exuding metabolites not only to mobilize scarce nutrients
but also to attract beneficial microbial partners that alleviate
nutrient stress.

Looking ahead, a deeper understanding of plant-microbiome
interactions during biotic stress and abiotic stresses such as nu-
trient limitation will be essential for developing sustainable,
microbiome-informed strategies to enhance plant health and nu-
trition (see Outstanding questions box). These strategies include
plant-driven approaches, such as breeding for traits that enhance
specific root exudations and beneficial microbe recruitment, as
well as microbe-driven solutions, including the development of
designed microbial consortia or engineered microbial strains
with improved functional capacities.

Future efforts should prioritize the translation of insights from
model species to crops, the integration of multi-omics data with
artificial intelligence and machine learning tools, and the valida-
tion of innovations under realistic field conditions. Past parallel
metabolome-microbiome experiments have been instrumental
in uncovering beneficial plant-metabolite-microbiome interac-
tions (Stringlis et al. 2018; Zhalnina et al. 2018; Jacoby et al.
2021; Pang et al. 2021; Csorba et al. 2022; Hong et al. 2022).
Next-generation spatial omics technologies are now pushing res-
olution from whole-root averages to micrometer-scale niches. For
instance, spatial metatranscriptomics applied to outdoor-grown
Arabidopsis leaves revealed bacterial and fungal “hotspots” and
linked them to localized induction of plant defense genes.
Spatial mass spectrometry imaging platforms have also been de-
veloped to map the distribution of root exudates and microbial
metabolites directly in the rhizosphere, revealing fine-scale chem-
ical gradients and plant-microbe interfaces (Saarenpidd et al.
2024; Veli¢kovi¢ et al. 2024).

Deep genome and metagenome sequencing underpin
constraint-based community metabolic models. Successfully ap-
plied in human microbiome studies, for example, to predict micro-
bial drug transformations in personalized medicine, these models
are now being adopted in plant microbiome research. They are
helping to elucidate how carbon partitioning and cross-feeding
shape microbiome assembly, with broad potential applications
(Heinken et al. 2023; Schéfer et al. 2023; Blonde et al. 2025).
Complementing these flux-based models, Li et al. (2025) introduced
RhizoSMASH, a genome-synteny algorithm that mines bacterial ge-
nomes for catabolic gene clusters, enabling the prediction of which
strains can catabolize specific root exudates and thrive in the
rhizosphere.

To move from correlation to causation, future studies should
generate co-registered multi-omics datasets from the exact
same samples and integrate them with causal-inference ML
frameworks capable of disentangling directional plant-microbe
feedbacks (Xu et al. 2021). The rapid development of Al and ML of-
fers significant opportunities, as plant microbiome-based predic-
tive models are beginning to show strong potential for forecasting
plant performance from large microbiome datasets (Wei et al.
2019; Kang et al. 2022; Lutz et al. 2023; Song et al. 2025). By inte-
grating these technological advances with plant genetics, micro-
bial ecology, and biotechnology, we can design resilient
agroecosystems that reduce reliance on fertilizers while improv-
ing crop nutrition and health.
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Advances Box

e The plant microbiome has emerged as a foundation for a
potential “second green revolution.”

e Root-derived metabolites serve as key mediators in the
recruitment and functional activation of beneficial
microbes.

¢ Plant defense-related metabolites play crucial roles in
deterring harmful pathogens while supporting the es-
tablishment of beneficial microbiota.

e During nutrient deprivation, root-secreted metabolites
recruit microbial partners that assist in nutrient
acquisition.

e Artificial intelligence has emerged as a powerful tool to
harness the complexity of plant-microbiome interac-
tions and enhance crop resilience.

Outstanding Questions Box

e The effects of specific plant-derived metabolites on mi-
crobiome assembly and function are rapidly being un-
covered, but how do these metabolite functions
manifest within the metabolically and microbially com-
plex environment of the soil-root interface?

e Whatroles do specific metabolites play in recruiting pro-
tective microbiota under biotic or abiotic stress
conditions?

e How do individual microbial taxa functionally respond
to stress-induced root-secreted metabolites—for exam-
ple, by facilitating nutrient uptake or enhancing plant
resistance to biotic or abiotic stress?

e What are the molecular mechanisms that enable mi-
crobes to tolerate selective antimicrobial metabolites?

e How can we leverage insights into the role of plant-
derived metabolites in shaping beneficial root micro-
biomes to develop future microbiome-optimized crops?
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