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Abstract

The plant circadian clock coordinates developmental, physiological, and metabolic processes with diel changes in light and
temperature throughout the year. The balance between the persistence and plasticity of the clock in response to predict-
able and unpredictable environmental changes may be key to the clock’s adaptive nature across temporal and spatial
scales. Studies under controlled conditions have uncovered critical signaling pathways involved in light and temperature
perception by the clock; however, they don’t account for the natural lag of temperature behind photoperiod. Studies in
natural environments provide key insights into the clock’s adaptive advantage under more complex natural settings. Here,
we discuss the role of the circadian clock in light and temperature perception and signaling, how the clock integrates these
signals for a coordinated and adaptive response, and the adaptive advantage conferred by the clock across time and space

in natural environments.

Introduction

Rhythms are innate to our planet, from the earth’s daily ro-
tation on its axis to its yearly orbit around the sun.
Temporal and spatial gradients across regional and global
landscapes create variation in daily and seasonal cycling of
light and temperature (Figure 1). Organisms across all
domains and kingdoms have evolved to capture and exploit
these patterns through use of an internal circadian oscillator
(reviewed in Young and Kay, 2001 and Saini et al. 2019).

For centuries, botanists have been attuned to the daily
and seasonal patterns of plant processes, such as floral
opening, inspiring Linnaeus’s floral clock (Horologium
Florae). Linnaeus proposed a timekeeping garden with 15-
min resolution based on the timing of floral opening and
closing in different plants (von Linné, 1751). While variation
across latitudes and seasons makes this garden concept
much more complicated in practice than theory, this

timekeeping ability of plants is important for their adapta-
tion to the local environment across days, seasons, years,
and geographic ranges.

The plant circadian clock is entrained by exogenous cues
from the environment and maintained by coordinated tran-
scriptional—translational feedback loops (Box 1). The circa-
dian oscillator is entrained to light and dark (photocycling)
and temperature (thermocycling) cycles and can vary by pe-
riod (cycle length), phase (timing of peak), and amplitude
(half the difference between peak and trough; reviewed in
Webb et al, 2019). It is important to distinguish diel versus
circadian regulation. Diel regulation signifies responses di-
rectly related to daily cues such as photo- or thermo-
cycling, while circadian regulation denotes cycling that is
maintained under free-running conditions, without the pres-
ence of exogenous cues.These transcriptional and transla-
tional cycles time metabolic processes throughout the day
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Adaptive nature of the circadian clock

ADVANCES

® Photoreceptors and thermosensors, namely,
PHYB and ELF3, play an important role in
integrating light and temperature cues into the
clock, which in turn modulates the response to
control the timing of developmental processes.

® The clock is tuned to seasonal rhythms of light
and temperature, globally influencing
transcriptional patterns across the year and
coordinating seasonal timing of physiological
processes (germination, photosynthesis, growth,
flowering, dormancy, etc.).

® Natural variation in circadian clock
performance across geographic scales supports
contribution to local adaptation.

® Despite the challenges of differentiating
environmental signals, studies in natural
settings provide important insights into
circadian contributions to plant adaptation.

to ensure the coordination of physiology with the external
environment (reviewed in Greenham and McClung, 2015). A
sunflower (Helianthus annuus) turning to the east to pre-
pare to capture light for photosynthesis prior to dawn
(Atamian et al, 2016), the calculated degradation of starch
during the night in Arabidopsis (Arabidopsis thaliana; Graf
et al, 2010), and response to abiotic stresses (reviewed in
Seo and Mas, 2015) are a few examples of the daily pro-
cesses controlled by the clock. Changes in daylength (photo-
period) throughout the year impose additional
environmental signals that the clock relays to the plant to
control seed dormancy (Penfield and Hall, 2009), growth
(Ramos-Sanchez et al, 2019), flowering time (Anwer et al,
2020), and senescence (Kim et al., 2018). While the clock dy-
namically adjusts based on external inputs of light, tempera-
ture, and other factors (plasticity), it also maintains accurate
timekeeping despite varying environmental conditions (per-
sistence; Matsuzaki et al, 2015). The balance between plas-
ticity and persistence of the clock is likely key to the
adaptive advantage conferred by the clock.

Experimentally coupling circadian function with fitness
and thus adaptation is a complicated endeavor, given the
narrow definitions of both fitness and adaptation (reviewed
in Johnson, 2005). Some studies have reported increased fit-
ness associated with a circadian period that matches the en-
vironmental rhythm, providing evidence for the adaptive
nature of the clock (Ouyang et al, 1998; Yerushalmi et al,
2011); however, most studies address adaptation by proxy,
through enhanced stress response, photosynthesis, survival,
or rates of growth and development. In this review, we dis-
cuss this implied adaptation, addressing the adaptive nature
of the plasticity of the clock in response to light and tem-
perature signals and the clock’s role in facilitating plants’
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responses to their dynamic environment across spatial and
temporal scales.

Role of the clock in light and photoperiod
perception and signaling

Light is one of the most important entraining cues for the
clock. Light is an intricate environmental signal that varies
in solar radiation intensity, daylength, and quality, and
changes depending on latitude, time of year, and time of
day (Figure 1). Daylength (photoperiod) predictably changes
across the cycle of a year within a latitudinal zone. Solar an-
gle changes across individual days and over the cycle of a
year, influencing both light intensity and quality across lati-
tudinal zones (Kotilainen et al., 2020). Additional daily and
seasonal variation in light intensity and quality occurs from
variable environmental factors, like cloud cover, ozone layer,
or canopy structure and cover (Chiang et al, 2019;
Kotilainen et al, 2020). The combined signaling of light in-
tensity, quality, and photoperiod across days and seasons
must therefore be integrated into the entrainment of the
clock.

Light is perceived by five plant light receptors with specific
wavelength absorptions: the cryptochromes (CRY1, CRY2),
the phototropins (PHOT1, PHOT2), the ZEITLUPE/FLAVIN-
BINDING, KELCH REPEAT, F BOX 1/LOV KELCH PROTEIN2
(ZTL, FKF1, LKP2) blue light sensing family, the ultraviolet
(UV)-B photoreceptor UV RESISTANCE LOCUS 8 (UVRS),
and the red light (R) and far-red light (FR) perceiving phyto-
chromes (PHYA-E; Ahmad and Cashmore, 1993; Somers
et al, 1998a; Lin and Todo, 2005; Zoltowski and Imaizumi,
2014; Casal and Balasubramanian, 2019; Legris et al, 2019).
These light receptors are responsible for irradiance and
spectrum-based signaling to the clock. The clock in turn
modulates light responsiveness throughout the day. For ex-
ample, the clock mediates the light induced responsiveness
of the CHLOROPHYLL A/B-BINDING PROTEIN (CAB) gene to
attenuate light responsiveness overnight and tune respon-
siveness to dawn, which is dependent on EARLY
FLOWERING 3 (ELF3; McWatters et al,, 2000). This regulation
also varies with photoperiod where short-day (SD) condi-
tions elicit a more rapid light induced response (Millar and
Kay, 1996). This would suggest an adaptive advantage for
being able to maximize photosynthesis when days are short.

The  morning-expressed core clock  component
CIRCADIAN CLOCK ASSOCIATED 1 (CCAT1) is highly sensitive
to light. A 1-min pulse of white light given to dark grown
Arabidopsis induces the expression of CCA1 (Liu et al,
2020). This induction is lost in the phytochrome mutants
phyAphyB and phyABDE and the phytochrome light signal-
ing mutant of FAR-RED-ELONGATED HYPOCOTYL 3 (FHY3).
FHY3 accumulates within 1 min of light and binds to the
promoter to activate CCAT expression. This activation is
blocked by TIMING OF CAB EXPRESSION 1 (TOCT1) binding
to FHY3 during the dark period (Liu et al., 2020). The punc-
tual morning expression of CCA1 is apparent for Arabidopsis
halleri subsp. gemmifera growing in its natural environment
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Figure 1 Daily and annual patterns of light and temperature. Sunlight and temperature patterns in locations representing different latitudinal
zones, 10°N (Caracas, Venezuela; 10.5°N, 66.9°W), 30°N (New Orleans, LA, USA; 30.0°N, 90.0°W), and 55°N (Copenhagen, Denmark; 55.7°N,
12.6°E). A, Hourly solar radiation (Wh m™2) and (B) hourly temperature (°C) for a clear day in each location near the spring equinox (March),
summer solstice (June), fall equinox (September), and winter solstice (December) in 2020. Arrows in (B) indicate dawn and dusk. C, Average
monthly temperature (°C) and daylength (h) within each location in 2020. Average solar radiation and daylength plots modeled based on data
from the “Global Solar Atlas 2.0” (https://globalsolaratlas.info) and Weather Spark (https://weatherspark.com/); temperature data obtained from

Time and Date AS (https://www.timeanddate.com/).

across seasons (Nagano et al, 2019; Figure 2). In addition to
CCA1, clock genes PSEUDO-RESPONSE REGULATOR 7
(PRR7), GIGANTEA (GlI), and NIGHT LIGHT-INDUCIBLE AND
CLOCK-REGULATED GENES 1-4 (LNK) showed the largest in-
duction in response to a light pulse when given at night
(Rugnone et al,, 2013). This is consistent with the enhanced
sensitivity of clock entrainment to nighttime light
(Covington et al, 2001) and likely important for sensing sea-
sonal changes in daylength.

Precise sensitivity to dawn means that plants across a
landscape may entrain differently depending on their loca-
tion, size, or proximity to other plants. Expression of
morning-expressed LATE ELONGATED HYPOCOTYL (LHY)
peaked 2 h earlier in 4-month versus 9-month-old sugarcane
(Saccharum hybrid) along with half of rhythmic expressed
transcripts and a 6 h earlier peak in sucrose (Dantas et al,
2021). Dantas et al. (2021) hypothesized that this was due

to self-shading in older stands. This hypothesis was consis-
tent with their finding that LHY peaked ~1 h later in plants
on west versus east margins of the field and in plants be-
hind versus in front of an artificial wall, corresponding to
the delay in full sunlight illumination of ~1 h and an even
greater delay in temperature change (Dantas et al, 2021).
These findings suggest that plants across natural landscapes
experience different microclimates that can alter photope-
riod sensing by the clock. Likewise, different parts of the
same plant experience variation in light timing and quality
as well as temperature patterns due to self- or canopy-
shading. This poses an interesting question of how the clock
differentially influences plant performance between canopy
and understory plants.

The transition from vegetative growth to flowering has
precise seasonal timing to appropriately coordinate flower-
ing with conducive environmental conditions after sufficient
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Box 1 THE PLANT CIRCADIAN CLOCK TRANSCRIPTIONAL NETWORK.

The plant circadian clock consists of a series of transcriptional-translational feedback loops that drive rhythmic
patterns of activity throughout the day. A tremendous body of work in A. thaliana has uncovered the compo-
nents necessary for oscillator function and we encourage readers to read recent reviews detailing these studies
(McClung, 2019; Webb et al, 2019; Nakamichi, 2020; Nohales, 2021). Briefly, the dawn expressed CIRCADIAN
CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) myb-like transcription factors re-
press the PSEUDO-RESPONSE REGULATOR (PRR) genes, GIGANTEA (Gl), and the evening complex (EC) compo-
nents, LUX ARRHYTHMO (LUX), EARLY FLOWERING 3 (ELF3), and ELF4, in addition to their own transcription.
The PRRs are sequentially expressed throughout the day starting with PRR9, and followed by PRR7, PRRS, and
PRR1 (also known as TIMING OF CAB EXPRESSION1, TOCT; Matsushika et al, 2000). The expression of TOCT and
PRRS is promoted by the NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED GENES 1 (LNK1) and LNK2 tran-
scriptional co-activators complexed with members of the DNA-binding REVEILLE family (RVE4, RVE6, and RVES;
Rawat et al,, 2011; Rugnone et al., 2013; Xie et al, 2014; Pérez-Garcia et al.,, 2015). The LNK-RVE complex(es) also
activates the expression of Gl and the EC. CCA1 expression is regulated by LIGHT-REGULATED WD1 (LWD1)
and LWD2 along with TEOSINTE BRANCHED 1-CYCLOIDEA-PCF20 (TCP20) and TCP22 (Wu et al,, 2016). As the
PRRs are expressed, they repress CCA1, LHY, and their own transcription. TOC1 represses members of the EC
and GI, while the EC in turn represses PRR9, PRR7, and LUX (McClung, 2019; Webb et al,, 2019; Nakamichi, 2020;

Nohales, 2021).

growth and resource accumulation for seed production. This
coordination requires plants to have a sense of the time of
year, which is primarily accomplished through photoperiodic
sensing. The molecular mechanisms of flowering have been
extensively studied and reviewed (Cao et al, 2021; Freytes
et al, 2021). Briefly, in Arabidopsis, photoperiodic flowering
is induced by FLOWERING LOCUS T (FT) after its transcrip-
tional activation by CONSTANS (CO) and putative ortho-
logs to these genes and pathways have been identified
across species (Kardailsky et al,, 1999; Kobayashi et al,, 1999;
Samach et al, 2000; Fan et al, 2014). Light signaling path-
ways and circadian components control the transcriptional
and posttranscriptional regulation of CO resulting in com-
plex photoperiodic flowering control (Suarez-Lépez et al,
2007; Valverde et al., 2004). Induction of flowering is deter-
mined based on both external and internal coincidence
models, such that external environmental cues align with in-
ternal cycles of gene expression. Under SD, FKF1 and Gl
gene expression peak in the dark with minimal overlap. The
FKF1-GI protein complex formation accumulates in light
under long-day (LD) conditions when their expression
phases overlap (Sawa et al, 2007). The blue light stabilized
FKF1-GI complex targets the CYCLING DOF FACTOR
(CDF) transcriptional repressors of CO for degradation,
allowing CO to induce flowering (Sawa et al, 2007; Fornara
et al,, 2009).

Gl is a primary circadian mediator of CO expression, and
along with ELF3, is essential to photoperiodic flowering in
Arabidopsis (Mizoguchi et al,, 2005; Anwer et al,, 2020). The
involvement of Gl in flowering induction is conserved across
diverse species of angiosperms (reviewed in Mishra and
Panigrahi, 2015). Mutations in both ELF3 and Gl lead to the
loss of photoperiod responsive flowering and reduced sensi-
tivity to photoperiod-dependent hypocotyl growth. In addi-
tion, the characteristic expression patterns of CCA1, PRRY,

and TOCT under diel conditions are lost in the elf3-4 gi-158
mutant, consistent with a loss of clock sensing of photope-
riod (Anwer et al,, 2020).

Putative orthologs of Arabidopsis flowering genes CO and
FT in poplar trees (Populus spp.) contribute to the regula-
tion of seasonal bud set and growth cessation (Bohlenius
et al, 2006). In poplar, daylength influences LHY2 expression,
accumulating during the night in SD to suppress FT2 expres-
sion and shoot apical growth (Ramos-Sanchez et al,, 2019).
Two Gl-like putative paralogs play a key role in maintaining
vegetative growth and preventing growth cessation and bud
set in LD in poplar, such that knockdown stopped growth
and led to premature bud set under LD, while overexpres-
sion delayed bud set even under SD conditions (Ding et al,
2018). Delayed bud set is also observed in lhy (lhy-3; lhy-8;
lhy-10) and toc1 (toc1-1; toc1-4; toc1-5) mutants with short-
ened circadian periods (Ibanez et al, 2010). LHY also func-
tions in promoting bud burst in spring, indicated by delayed
bud break in lhy (lhy-3; lhy-10) mutants (Ibanez et al, 2010).

Depending on the species and adaptive timing for flower-
ing, other clock genes have variably evolved in photoperi-
odic responses to induce or repress flowering. For example,
the PRRs differentially influence photoperiodic flowering of
LD and SD flowering plants. While overexpression of PRR5
causes early flowering in LD Arabidopsis (Nakamichi et al,
2007), overexpression of AtPRR5 in SD rice (Oryza sativa)
delays flowering (Nakamichi et al, 2020). Four LHY-CCA1-
LIKE (LCL) orthologs were reported in soybean (Glycine
max), with circadian rhythmicity entrained by both light
and temperature patterns (Wang et al, 2020). While both
the Arabidopsis lhy (lhy-11; Ihy-12; Ihy-13) ccal-1 mutants
and the quadruple LCL loss-of-function mutant in soybean
display shortened circadian period, flowering is induced in
the Arabidopsis mutants and delayed in the soybean mu-
tant under SD (Mizoguchi et al, 2002; Wang et al, 2020).
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Figure 2 Seasonal clock variation and corresponding physiological influences. Variation in daily expression patterns of core clock genes (CCA1, G,
TOCT) across seasons and various physiological processes influenced by the plant circadian clock across a year. Gene expression patterns adapted
from Nagano et al. (2019) from transcriptomic data for natural population of Arabidopsis halleri subsp. gemmifera in Hyogo, Japan (35.1°N,
134.9°E) on spring equinox (March; high 16°C, low 10°C), summer solstice (June; high 26°C, low 22°C), fall equinox (Sept; high 31°C, low 24°C),
and winter solstice (Dec; high 10°C, low 3°C), in 2013. Graphics created with BioRender (https://biorender.com/).

Natural variation in the ELF3 homolog (Heading date 17,
Hd17) in rice leads to altered photoperiodic flowering
(Matsubara et al, 2012) and HVELF3 is required to initiate
photoperiod-sensitive entrainment in barley (Hordeum vul-
gare; Deng et al, 2015). In soybean, a modern haplotype of
GmPPR3b inhibits GmCCA1, causing the loss of GmELF3 acti-
vation and delayed flowering (Li et al, 2020). These findings
are consistent with the role of ELF3 in photoperiodic sensing
in Arabidopsis (Anwer et al., 2020). Taken together, it is ap-
parent that clock variation has differing effects across LD
and SD plants, which could indicate divergent regulation of
flowering downstream of the clock.

Role of the clock in temperature perception
and signaling

The relationship between temperature and the circadian
clock is complex and seemingly paradoxical. A property of

all oscillators is temperature compensation where the circa-
dian period is maintained despite changes in ambient

temperature, thus accommodating variation in weather. Yet,
circadian clocks can be entrained by temperature cycles as
small as 4°C (Somers et al, 1998b), a competing action to
temperature compensation. How a clock can be compen-
sated to and reset by the same temperatures is especially
relevant when considering plant responses to temperature
fluctuations in the natural environment. While the exact
mechanism of temperature compensation isn’t clear, several
clock genes including CCA1, LHY, Gl, PRR7, and PRR9 are
known to be involved (Gould et al, 2006; Salome et al.,
2010). Likewise, clock genes ELF3, PRR7, and PRR9 are essen-
tial for thermocycle entrainment (Salomé and McClung,
2005; Thines and Harmon, 2010).

While ELF3 is a core member of the clock evening com-
plex (EC), its role in thermocycle entrainment is indepen-
dent of other EC genes, ELF4 and LUX ARRHYTHMO (LUX),
indicating its distinct role as a thermosensor within the
clock (Nusinow et al, 2011; Zhu et al, 2022). The tempera-
ture sensing function of ELF3 is dependent on a variable
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length polyQ repeat region located within a prion-like do-
main (Jung et al, 2020). This domain is responsible for the
temperature-dependent phase separation of ELF3, leading to
inactivation at high temperatures. Temperate grown potato
(Solanum tuberosum) contains a smaller domain compared
to Arabidopsis, and warm adapted Brachypodium distachyon
lacks it completely. A chimeric Arabidopsis ELF3 with the
corresponding sequence of the domain from B. distachyon
suppresses thermoresponsive flowering (Jung et al, 2020).
ELF3 stability is further regulated through B-BOX 18
(BBX18)-dependent targeted degradation at warm tempera-
tures by the E3-ligases XB3 ORTHOLOG 1 IN ARABIDOPSIS
THALIANA (XBAT31) and XBAT35 (Zhang et al, 2021a,
2021b). These findings support a key role for ELF3 in adap-
tive variation in temperature signaling and thermocycle
entrainment.

Phytochromes likely also play a role in integrating temper-
ature into the clock. Phytochromes exist in two conforma-
tions. The active form (Pfr) is induced by R and is
inactivated (to Pr) by both FR and temperature-dependent
thermal reversion (reviewed in Klose et al,, 2020). Critical to
the PHYB Pfr form function is the light-induced formation
of photobodies, which is stabilized by the EC-associated
PHOTOPERIODIC CONTROL OF HYPOCOTYL 1 (PCH1)
providing prolonged growth repression under long nights
(Huang et al., 2016a, 2016b). Thermal reversion activity pro-
vides a unique temperature sensing property of PHYB that
is independent of light and modulated by PCH1 (Jung et al,
2016; Legris et al, 2016; Huang et al, 2019). The thermomor-
phogenic response is not completely lost in the phyB mu-
tant but is in the quintuple phyABCDE mutant, suggesting
that other phytochromes are also important for tempera-
ture sensing (Jung et al, 2016). Modeling experiments pre-
dict that PHYB activity is influenced more by temperature
when light levels are low (i.e. early morning shaded, or
cloudy conditions) compared to in full sunlight when light
is the predominant signal (Sellaro et al, 2019). PHYB has
been shown to interact with several clock proteins including
ELF3, GlI, TOC1, CCA1, LHY, and LUX, and some of these
interactions depend on light quality (Yeom et al,, 2014). The
interaction with LUX occurred under R but not FR, CCAT,
and TOC1 preferentially interacted with PHYB under FR,
and LHY, Gl, and ELF3 interacted with PHYB under both R
and FR. The physiological importance of these interactions is
not fully known, but they do offer a mechanism for signaling
changes in R/FR ratios to the clock (Yeom et al, 2014).
Increased cloud cover has been observed in much of the
world with the changing climate (Cox et al, 2020), indicat-
ing that clock interactions with PHYB may be ever more im-
portant, and warranting further studies on the interaction of
the clock with phytochromes across dynamic environments.

Much of the work on temperature sensing in plants has
focused on either stress conditions or prolonged growth at
changes in constant ambient temperature. Circadian studies
on natural accessions of Arabidopsis grown at temperatures
that span the ambient range (12°C-27°C; Wigge, 2013)
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have revealed diverse temperature compensation responses
across accessions. A general trend found across studies and
species is a shortening of period at elevated temperatures
(Edwards et al, 2005; Kusakina et al, 2014; Bdolach et al,
2019). A unique Gl allele in Arabidopsis is associated with
more extreme period shortening at high temperature, which
is counterbalanced by a unique ZTL allele with high-
temperature-dependent period lengthening (Kim et al,
2020). The interaction of these unique alleles is reduced at
high temperature and, since Gl plays a role in ZTL stabiliza-
tion, this results in altered ZTL accumulation, which is asso-
ciated with more robust temperature compensation. This
suggests that the interaction of Gl and ZTL plays a key role
in temperature compensation mechanisms (Kim et al,
2020). While these experiments do inform our understand-
ing of temperature compensation, they do not address circa-
dian performance in response to changes in thermocycles, a
condition that is more reflective of the natural environment.

Mathematical modeling of clock entrainment and temper-
ature compensation revealed more robust temperature
compensation, meaning more stable clock function, in the
presence of both temperature and light cycling conditions
(Avello et al, 2019). The models indicate that temperature-
dependent degradation rates of mRNA and protein across
the system play a role in mediating the paradoxical compen-
sation and entrainment properties of the clock. Predicted
clock function was modeled across differing entrainment
conditions, with all combinations of photoperiod length (3—-
21 h), daytime temperature (17, 21, 25, or 29°C), and day/
night temperature differential (4, 8, or 12°C). The highest
temperature regime (29°C day) resulted in clock dysfunc-
tion, although clock function was restored under SD condi-
tions with large day/night temperature differentials of 8°C
or 12°C. However, the large temperature differentials led to
the loss of entrainment in SD under low temperature (17°C
day; Avello et al, 2019). These results indicate that the
higher and more extreme temperatures and warmer night-
time temperatures associated with climate change in the ab-
sence of corresponding changes in light conditions may
disrupt temperature entrainment and, more broadly, clock
function in general.

The interaction between time of day and temperature sig-
naling can also influence clock function. In Arabidopsis
grown under LD conditions, a 4-h temperature cycle of
+10°C given at different times of day causes unique effects
on the oscillator (Masuda et al,, 2020). A 10°C increase had
a more dramatic effect on CCA1 promoter expression that
was time of day dependent compared to a 10°C drop,
which had minimal effects overall. The 10°C increase was as-
sociated with greater fresh weight when given at 8 h com-
pared to 14 h after dawn, with a linear relationship between
CCA1 amplitude and growth (Masuda et al, 2020). This re-
sponse may be tuned to the expectation that the warmest
part of the day usually occurs in the mid-afternoon rather
than near dusk (Figure 1). A similar study imposing a tem-
perature change from ambient 22°C to 28°C for 3 h at
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various times during a 12-h photoperiod resulted in differen-
tial effects on clock gene expression (Mizuno et al, 2014).
Nighttime increases in temperature of 6°C had dramatic
effects on clock gene expression, with a gradual increase in
expression throughout the night of PRR7, PRRY, G, and LUX
that was dependent on the presence of ELF3 and ELF4
(Mizuno et al,, 2014). While nighttime temperature increases
are less common in natural settings on an acute scale, more
land area has experienced asymmetric nighttime versus day-
time warming globally (from 1983 to 2017; Cox et al,, 2020).
Warmer night temperatures (2°C-3°C increase) led to a
12.5% reduction in grain yield and altered global temporal
transcriptional patterns in field-grown rice panicles, with cir-
cadian and diel rhythmic genes most sensitive to the
warmer nights (Desai et al, 2021). The time of day when
temperature fluctuations occur on both daily and seasonal
scales is relevant when considering the impact of tempera-
ture variation and climate change on clock function and
plant growth and performance.

Temperature also directly impacts flowering time through
vernalization and temperature-dependent induction or re-
pression of flowering. Vernalization is a process through
which flowering repression is released after an extended pe-
riod in low temperatures. CCA1 and LHY are involved in ac-
tivating expression of VERNALIZATION INSENSITIVE 3
(VIN3), a critical component of the vernalization pathway, es-
pecially under mild cold conditions or early during vernaliza-
tion, to accelerate flowering in Arabidopsis (Kyung et al,
2022). Elevated, but not stressful, temperature (27°C versus
23°C) accelerates flowering of Arabidopsis under SD to a sim-
ilar degree as LD photoperiodic induction (Balasubramanian
et al, 2006). Earlier flowering persisted across several photope-
riod response mutants, indicating that high temperature in-
duced flowering is independent of photoperiodic induction
(Balasubramanian et al, 2006). As climate change causes

ambient temperature rise, high temperature flowering initia-
tion may precede photoperiodic induction, resulting in al-
tered growth, premature transition from vegetative growth to
flowering, and ultimately reduced fitness traits, such as flower
number or seed yield (Figure 3). Studies of circadian behavior
and plant performance across elevational clines could intro-
duce temperature variation within a photoperiodic zone to
demonstrate temperature effects on clock function and flow-
ering in natural environments.

Circadian integration of temperature and
photoperiodic signaling

There has been substantial work focused on the interplay
between light signaling, temperature, and the circadian
clock, but these experiments are often confined to con-
trolled growth conditions where one condition is fixed
while the other is perturbed. Increasing temperatures
with consistent daylength patterns could create misalign-
ment between light- and temperature-entrained signaling
and disrupt the timing of clock-directed physiological or
developmental processes (Figure 3). Alternatively, as the
change in climate drives species to more northern lati-
tudes, how will the new photoperiod and thermocycle
conditions alter growth and fitness? Over 2,000 genes
(13.5% and 10.7% of cycling genes in poplar and rice, re-
spectively) are entrained uniquely by thermocycles in
poplar and rice (Filichkin et al., 2011). Additionally, 11%
of cycling genes in Brassica rapa displayed altered tempo-
ral transcript abundance patterns between photocycling
and thermocycling conditions (Greenham et al, 2020).
Given these global effects on the transcriptome, the loss
of or shift in thermocycling with respect to photocycles is
likely to have far-reaching impacts on clock function and
thus growth and productivity in natural settings.
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Box 2 NATURAL LAG OF TEMPERATURE BEHIND PHOTOPERIOD IN NATURAL ENVIRONMENTS.

The axial tilt of the earth’s rotation generates disproportionate changes in solar radiation and temperature ampli-
tudes throughout the year across latitudinal zones (Hut et al,, 2013), with smaller temperature and photoperiodic
ranges near the equator and more variable ranges further away (Figure 1). An important property to consider
when assessing latitudinal clines is the annual hysteresis on earth that results in temperature lagging behind pho-
toperiod (Hut et al, 2013; Donohoe et al, 2020), such that the hottest day occurs sometime after the longest
day of the year (summer solstice), and likewise, the coldest day occurs after the shortest day (winter solstice).
Additionally, this lag varies across the year, as there is usually a longer delay from the summer solstice to maxi-
mum temperature, and a shorter one from the winter solstice to minimum temperature. The length and extent
of asymmetry of this seasonal lag period varies across locations (Donohoe et al.,, 2020). This temperature lag also
occurs daily, with the warmest part of the day generally occurring after midday and the coldest part of the night
generally near dawn (Figure 1). The seasonal and daily light and temperature patterns in natural environments
therefore conflict with the environmental conditions in most controlled environment experiments, which primar-
ily use temporally aligned and stepwise light and temperature transitions.

Transcriptional and post-transcriptional dynamics orches-
trated by the clock coordinate plant seasonal development,
growth, metabolism, and other responses. Arabidopsis re-
combinant inbred line (RIL) populations entrained in field
conditions throughout the growing season displayed varia-
tion in clock phase of the COLD CIRCADIAN RHYTHM RNA
BINDING 2 (CCR2) promoter across different months, with
the extent and direction of phase change variable across
populations and individual RILs (Rubin et al, 2017).
Interestingly, longer circadian periods were associated with
reduced rosette branch number and increased cauline
branching across these RIL populations (Rubin et al, 2018).
In natural populations of perennial Boechera stricta, early
above-ground biomass accumulation was positively associ-
ated with period length across families (Salmela et al,, 2016).

In a study of transcriptional patterns across seasons of pe-
rennial A. halleri subsp. gemmifera in its natural environ-
ment, associations of transcriptional profiles across 2 years
showed clear seasonal patterns, with varied gene ontologies
enriched across different seasons (Nagano et al, 2019).
Additionally, diel oscillation of core clock gene expression,
such as CCAT1, Gl, and TOCI, displayed variation in ampli-
tude across seasons, with lowest amplitude during the win-
ter and highest in the summer (Figure 2). This reduction in
amplitude during the winter season was observed in over
80% of rhythmic genes (Nagano et al, 2019). Similar loss of
rhythmicity of the circadian clock was previously observed
during the winter season in chestnut (Castanea sativa;
Ramos et al,, 2005). In Arabidopsis, diel patterns of transcrip-
tional and metabolic profiles were also dampened for plants
in constant low temperature conditions (Espinoza et al,
2010). Interestingly, while transcript levels of CCAT and LHY
in Arabidopsis dampened within a few days at 4°C, their
protein levels remained abundant and rhythmic (Kyung
et al, 2022). This suggests that protein translation and deg-
radation may serve an important role in clock-mediated
cold temperature responses.

In temperate regions, seasonal temperature lags behind
changes in daylength (Box 2; Figure 1), but in natural

environments it is difficult to parse these effects on tran-
scriptional dynamics. To separate these effects, Nagano et al.
(2019) grew plants in chambers with a temperature lag be-
hind daylength to mimic the natural environment, or with
temperature change in-phase or anti-phase with daylength
change. For plants grown under the same temperature re-
gime with an anti-phase daylength pattern, gene expression
was more highly correlated to temperature than daylength.
Additionally, plants grown in “natural” lag conditions had in-
creased fitness compared to those in the in-phase or anti-
phase conditions, indicating adaptation to the natural lag
between temperature and daylength (Nagano et al, 2019).
Temperature was also identified as the main driver of tran-
scriptional and metabolic variation in Arabidopsis across diel
and constant light experiments at 20°C or 4°C (Espinoza
et al, 2010).Along with temperature and photoperiodic vari-
ation, plants experience developmental and maturity
changes across a season. Diel patterns of both clock and
seed-fill genes were observed in cowpea (Vigna unguiculata)
leaves, pods, and seeds, but patterns varied across organs
and maturity stage (Weiss et al, 2018). Interestingly, diver-
gent patterns or loss of rhythmicity were found in con-
trolled environments compared to the field (Weiss et al,
2018). In contrast, Nagano et al. (2019) reported an associa-
tion in seasonal gene expression patterns between field and
growth chamber experiments, but gene expression was
more highly correlated to temperature in the controlled en-
vironment compared to outdoors. Findings regarding flower-
ing also vary across lab and natural conditions (Song et al,
2018). While FT peaks at the end of day in Arabidopsis un-
der lab settings, Song et al. (2018) found FT peaking in both
the morning and evening in natural environments.
Introduction of thermocycling and a lower R/FR ratio (from
2 to 1) into controlled conditions, to better mimic natural
conditions, recapitulated the bimodal peaks of FT that were
observed in the natural environment (Song et al, 2018).
Despite the difficulty of separating long- and short-term dy-
namics in natural environments, studies in natural settings
include nuance that is missed in controlled environment
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studies that do not include stochastic fluctuations, seasonal
or daily lag, and the myriad of dynamic environmental cues
that occur outdoors.

The clock’s influence on plant adaptation
across geographic scales

The degree of daily and seasonal environmental variation is
influenced by geographic location and specifically latitude
and elevation. Plants that can adapt to this variation and
maintain fitness can expand their geographic range. Studies
in diverse organisms, including Drosophila (Drosophila mela-
nogaster), salmon (Oncorhynchus tshawytscha), Arabidopsis,
and Mimulus guttatus, have demonstrated latitudinal clines
in circadian period parameters, suggesting that the clock is
contributing to local adaptation (Costa et al, 1992; Michael
et al, 2003; O’Malley and Banks, 2008; Greenham et al,
2017). Recent studies in several plant species have revealed
additional geographic variation in the clock, especially for
the domestication of crops as human migration led to the
selection of traits that facilitated continued production in
different latitudinal zones (reviewed in Nakamichi, 2014;
Miiller et al, 2018; Li et al, 2020). The conservation of ge-
netic variation in circadian traits in wild plant populations
provides strong evidence for a role of the clock in local
adaptation.

In Arabidopsis, circadian regulated leaf movement was
used to uncover a significant positive correlation between
circadian period and the maximal daylength at the latitude
of origin for 150 accessions (Michael et al, 2003). A study of
a natural population of M. guttatus found significant varia-
tion in circadian period across a latitudinal cline for annuals,
with longer periods in more northern populations, but this
trend was not found for perennials (Greenham et al, 2017).
In the case of M. guttatus, annuals require proper timing of
flowering to avoid extreme summer drought, whereas peren-
nial populations grow in areas with wetter soils and flower
much later in the summer (Hall and Willis, 2006). Similarly,
a positive association was found between latitude and pe-
riod across wild species of potato, but not in landrace or
cultivated varieties which maintained a short period regard-
less of latitude (Hardigan et al, 2017). This contrasts with
tomato (Solanum lycopersicum), a day-neutral plant originat-
ing in the Andean region of Ecuador and Peru. A leaf move-
ment analysis of cultivated tomato, their wild ancestor, and
distantly related wild species uncovered altered period and
phase in modern cultivars (Mdller et al, 2016). Cultivated
tomato adapted to growth in higher latitudes had a circa-
dian period around 2-h longer with a 3-h phase delay com-
pared to ancestral Solanum pimpinellifolium. Quantitative
trait locus mapping uncovered the EMPFINDLICHER IM
DUNKELROTEN LICHT 1 (EID1) locus contributing to the
phase effect and LNK2 to the period effect (Miiller et al,
2016). Plants with the cultivated EID1 allele are shorter,
flower later, and have higher chlorophyll content, demon-
strating adaptive variation (Mdller et al, 2016, 2018). In
Arabidopsis, LNK genes connect the circadian clock with
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phytochrome-dependent light signaling (Rugnone et al,
2013). In tomato, this is also true, with the LNK2 allele phe-
notypes being dependent on PHYB (Mliller et al., 2018). The
alteration to clock regulation of light signaling may be an
important adaptation to the longer summer days in Europe.

Similar geographic phase associations have been found for
Gl, where the peak expression time across five photoperiods
from 8 h to 16 h was associated with geographic origin
across 77 Arabidopsis accessions (de Montaigu et al, 2015).
Interestingly, the peak time variation within photoperiods
was greatest at 12 h and smallest at 8 h (de Montaigu et al,,
2015). de Montaigu and Coupland (2017) found a significant
correlation between the change of daylength at the site of
origin and Gl sensitivity to daylength, defined as the differ-
ence in peak time between 12-h and 16-h photoperiods.
The variation in Gl expression also correlated with growth
rate, again indicating an adaptive role for clock variation (de
Montaigu and Coupland, 2017). Common garden experi-
ments with diverse accessions or species with varying clock
parameters (such as periods or phases) or sensitivities across
latitudinal and altitudinal clines could experimentally couple
these trends with adaptive advantage.

Not all geographic studies uncover such clear clines in
circadian parameters across wild populations. Studies us-
ing B. stricta collected from southeastern Wyoming found
a range of circadian periods among and within popula-
tions (Salmela et al,, 2016). In Mimulus laciniatus with an
annual life habit growing in the Sierra Nevada, eight pop-
ulations assessed for circadian period by leaf movement
were found to vary significantly in period across popula-
tions, but their period had no clear association to geo-
graphic distribution (Leinonen et al, 2020). Common to
the B. stricta and M. laciniatus experiments are sampling
at high elevations of 2,500-3,000 m and 1,000-2,600 m,
respectively (Salmela et al, 2016; Leinonen et al., 2020).
Elevational clines impose additional environmental varia-
tion across the year, altering temperature and precipita-
tion patterns. Hut et al. (2013) reported an average
decrease of temperature of 6.5°C for every 1,000-m
change in altitude. Across Arabidopsis accessions from
around the world, higher altitude has been correlated
with shorter periods (Edwards et al.,, 2005). While period
shortened in response to growth in warmer temperatures,
accessions had diverse temperature compensation pat-
terns. Notably, at the cool temperature (12°C) high alti-
tude accessions had a period ~24 h while lowland
accessions averaged ~26 h, meanwhile at warm tempera-
tures (22°C-27°C) the lowland accession period was ~24
h (Edwards et al., 2005). It could be that accessions from
higher altitudes have adapted their clock to the cooler
ambient temperatures at higher altitudes by decelerating
their clock to maintain a period of ~24 h. Although,
when the few high elevation samples were removed from
the dataset, the elevational effect on period was lost
(Edwards et al., 2005). Similarly, circadian period did not
covary with elevation across the Sierra Nevada
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OUTSTANDING QUESTIONS

® Following annual rises in temperature due to
climate change, how will variation in circadian
temperature compensation in the context of
stable photoperiodic fluctuations influence
species adaptation, growth, development, and
range?

® How are desynchronized thermocycle and
photoperiod interpreted by the clock to
mediate diverse processes?

® What are the differences in clock responses
between prolonged changes (e.g. global rising
temperatures) versus changes in acute cycling
and weather events?

® How does clock plasticity versus persistence
affect trait stability (growth, development,
yield) across years, seasons, and environments?

populations of annual M. laciniatus (Leinonen et al.,
2020), suggesting that other pressures of selection beyond
elevation contribute to variation in period lengths.

Concluding remarks

While controlled environment studies continue to elucidate
the vast influences of the clock and specific mechanisms of
regulation, they cannot encompass the complex effects of
the clock on plants in natural environments. Environmental
conditions that influence the clock naturally vary across
days, seasons, and vyears, both in predictable and unpredict-
able ways. The effects of these expected patterns and unex-
pected events on the circadian clock likely influence plant
response and ability to survive and adapt, with far-reaching
implications for conservation and agriculture. We have fo-
cused on the two strongest and most consistent environ-
mental inputs to the circadian clock, light and temperature,
and highlighted how these circadian drivers vary across spa-
tial and temporal scales with consequent implications for
plant performance in natural environments. The mounting
evidence of the clock’s influence on the survival, productiv-
ity, and fitness in both natural populations and field settings
should prompt investigation on the influences of the circa-
dian clock in more natural settings, across geographic and
temporal scales (see Outstanding Questions). Future studies
in natural seasonal environments and common garden
experiments with genotypes with diverse clock traits are
needed to uncover the dynamics of clock behavior and
plant processes over time and space. This will be key to the
adaptation of plants in natural populations and in agricul-
tural germplasm, with widespread implications on ecosystem
level conservation and on agricultural productivity in our
changing climate.
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