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A B S T R A C T
Advances in gene editing and natural genetic variability presen
t significant opportunities to generate novel alleles and select natural

sources of genetic variation for horticulture crop improvement. The genetic improvement of crops to enhance their resilience to abiotic stresses

and new pests due to climate change is essential for future food security. The field of genomics has made significant strides over the past few

decades, enabling us to sequence and analyze entire genomes. However, understanding the complex relationship between genes and their

expression in phenotypes - the observable characteristics of an organism - requires a deeper understanding of phenomics. Phenomics seeks to

link genetic information with biological processes and environmental factors to better understand complex traits and diseases. Recent

breakthroughs in this field include the development of advanced imaging technologies, artificial intelligence algorithms, and large-scale data

analysis techniques. These tools have enabled us to explore the relationships between genotype, phenotype, and environment in unprece-

dented detail. This review explores the importance of understanding the complex relationship between genes and their expression in phe-

notypes. Integration of genomics with efficient high throughput plant phenotyping as well as the potential of machine learning approaches for

genomic and phenomics trait discovery.
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1. Introduction

Meeting the burgeoning demands of a global population,
projected to reach 8.3 billion by 2030 and 10 billion by 2050, poses
significant challenges in ensuring adequate food, energy, and
water resources. Vital agricultural efforts append on augmenting
crop yields by 2.4% annually, a pace that currently lags at 1.3%
growth. Up to 40% of the world's grain cultivation area has stag-
nant yields (Rose and Chilvers, 2018;Watson et al., 2018). The task
of providing adequate nutrition for a rapidly expanding global
population underscores the urgency to enhance crop yields and
ensure food security. On the other hand, as the global population
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more unpredictable, agriculture faces a tough task in this cen-
tury. The challenge is to develop crops that can produce a lot of
food and handle stress, ensuring that we have enough to eat (Zia
et al., 2023). Advances in genome science, speed breeding, and
omics technologies, despite challenges, hold the key to address-
ing these pressing concerns and fostering sustainable agricul-
tural practices (Altaf et al., 2023).

Traditional breeding methods have yielded crops with
improved nutrition and output, yet the incremental growth of
major crop yields, including rice, wheat, and maize, falls short of
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et al., 2023). Overcoming the constraint of protracted crop pro-
duction cycles, a breakthrough known as “speed breeding” has
hastened research by shortening breeding cycles (SB). Genome
science has revolutionized the precise examination of desirable
traits, expanding beyond model organisms. Employing next-
generation resequencing techniques has expedited genome
reading for numerous crop plants at a reduced cost (Hussain
et al., 2023). While genome editing holds promise for quicker
crop development with minimal off-target effects, it still neces-
sitates time-consuming tissue culture and specialized contain-
ment facilities for CRISPR-mediated genetic manipulation (Chen
et al., 2019; Wang et al. 2023; Yu et al., 2024). The comprehen-
sive realm of omics encompasses the analysis of biological data
derived from genomes, transcriptomes, proteomes, and metab-
olomes, among other facets. Various omic technologies, such as
gene sequencing, transcription profiling, metabolite and protein
analysis, offer insights into the intricate mechanisms underlying
seed germination, abiotic and biotic stressors, and systemic gene
and metabolite activity. The integration of these approaches is
instrumental in unraveling the intricacies of food insecurity and
aiding its mitigation (Barah et al., 2021; Altaf et al., 2023; Zhang
et al., 2023). Plants are frequently subjected to high-density sin-
gle nucleotide polymorphism (SNP) genotyping in order to study
genetic variation and help trait-driven efforts to clone and
comprehend certain genes (Sedeek et al., 2019). Genomic tech-
niques allowed for the prediction of genes' type, location, func-
tion, and interactions. However, next-generation phenotyping
technologies must be used to validate gene predictions for
them to be accurate. The accuracy with which the relevant
Quantitative Trait Loci (QTLs) or chromosomal areas are located,
and their effects are reliably assessed to establish the
phenotypeegenotype relationship depends on the precision with
which the phenotyping data are recorded (Tuberosa, 2012;
Grobkinsky et al., 2015).

The knowledge gap between the genotype-to-phenotype is
one of the most significant issues in contemporary plant
breeding (Grobkinsky et al., 2015). While genomics research has
provided a wealth of knowledge on the genetic makeup of
different plant species, plant phenotyping is now limited by
sequencing techniques and the data they provide (Yang et al.,
2013; Diaz-Garcia et al., 2016). Conventional plant phenotyping
methods have a relatively low throughput, which precludes
thorough study of features within a single plant and across
cultivars. These methods rely on manual measurement of
chosen attributes from a small sample of plants (Furbank and
Tester, 2011). In recent years, the advancement of available
genomic databases and phenotyping databases has not only
facilitated the identification of gene function, new genes/QTL,
and the analysis of genetic architecture for complex traits, but it
has also led to an increase in the genetic gain for traits with low
heritability (Pratap et al., 2019). Furthermore, there has been
significant progress in the potential scope and throughput of
plant phenotyping studies through the adoption of image-based
approaches. Over the past five years, various factors such as the
introduction of new imaging technologies, implementation of
robotic and conveyer belt systems in greenhouses, and the uti-
lization of ground-based and aerial imaging platforms in fields
have collectively contributed to enhanced monitoring of plants
and crops (Fahlgren et al., 2015).
However, a critical prerequisite for the successful utilization of
image-based phenotyping technologies is the accurate and reli-
able conversion of these images into precise phenotypic mea-
sures. For these instruments to be versatile and applicable across
diverse scientific domains, they must possess the capability to
measure a wide array of phenotypes. Addressing the challenge of
predicting phenotypes using both genomic and environmental
information is of utmost importance. In this context, machine
learning methods have emerged as potent tools capable of
making precise predictions from the extensive and intricate
biological data. In essence, this review stands as a bridge con-
necting the realms of research and education. We can access
novel approaches to enhance their trait detection endeavors and
can gain insights into the burgeoning landscape of machine
learning's impact on trait discovery. The convergence of machine
learning, genomics, and phenotyping underscores a field that is
rapidlymaturing and offering exciting avenues for unraveling the
intricacies of genetic traits.

2. Plant genomics and phenomics

Plant phenomics occupies a crucial position at the intersec-
tion of genetics, phenotypic traits, and machine learning, as
highlighted in this paper. This dynamic field involves the sys-
tematic measurement and analysis of plant and animal traits to
unravel the intricate interplay between genetic makeup and
environmental influences. Employing cutting-edge technologies
such as high-throughput imaging, sensor networks, and data
analytics, plant phenomics enables the holistic characterization
of diverse phenotypic attributes (Li et al., 2021; Interdisciplinary
Plant Science Consortium, 2023). This comprehensive approach
offers valuable insights into plant growth, development, and re-
sponses to varying conditions. By integrating genetics, phe-
nomics, and machine learning, we can decipher complex
genotypeephenotype relationships, facilitating the optimization
of desired traits (Yang et al., 2013, 2020; Singh et al., 2023). This
synthesis of disciplines paves the way for advancements in crop
breeding, ensuring the creation of resilient plant varieties with
improved yields, stress tolerance, and sustainability in the face
of evolving agricultural challenges (Watson et al., 2018; Park et al.,
2019).

Genomics has revolutionized agriculture and horticulture
fields by providing new insights into the genetic basis of impor-
tant crop traits, helping to address some of the key challenges
facing agriculture and horticulture sectors in the 21st century.
Genomics has played a pivotal role in advancing the develop-
ment of novel plant selections, leading to improved yield, disease
resistance, drought tolerance, and nutritional quality in crops (Li
et al., 2021; Ferr~ao et al., 2023). These findings serve as a foun-
dation for creating new crop varieties using traditional breeding
methods, as well as modern techniques like genetic engineering
and gene editing. As a result, the application of genomics in
agriculture holds great promise for enhancing food security and
sustainability in the face of evolving challenges (Sedeek et al.,
2019; Aguilar et al., 2020; Ali et al., 2020; Gao, 2021). Genomics
can assist to develop more sustainable agricultural practices, by
enabling the breeding of crops that require less water, fertilizer,
or pesticides, and by identifying plantemicrobe interactions that
can enhance soil health and nutrient cycling (Watson et al., 2018;



Fig. 1 Major factors affecting the gene expression
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Bailey-Serres et al., 2019; Sedeek et al., 2019; He and Zhao, 2020;
Gao, 2021; Mahmood et al., 2023). The increasing adoption of gene
editing techniques and continued exploration of natural genetic
diversity offer exciting opportunities to create new alleles and
select favorable genetic variations for crop improvement (Huang
and Han, 2014; Barrangou and Doudna, 2016; Nunes-Nesi et al.,
2016; Schiml and Puchta, 2016).

The combination of genomics and phenomics has the poten-
tial to enhance breeding practices and create crop varieties that
are resilient to changing climates and adaptable to modern
breeding requirements. The relationship between genes and their
expression in plant phenotypes is complex and multifaceted
(Interdisciplinary Plant Science Consortium, 2023). Genes contain
the instructions for building proteins, which in turn determine
the traits or characteristics that are expressed in plants (Ferr~ao
et al., 2023). However, the expression of genes is not always
straightforward or predictable and can be influenced by a variety
of factors (Fig. 1).

The environment plays a crucial role in influencing gene
expression in plants. With exposure to various environmental
conditions like temperature, light, water availability, soil nutri-
ents, pests, and pathogens, the plant's genetics interact dynam-
ically. These interactions determine the activation or
suppression of specific genes and regulate the extent of their
expression. The intricate interplay between the plant's genetic
makeup and the surrounding environment significantly impacts
its growth, development, and responses to external stimuli.
(Bochner, 2003; Nordborg and Weigel, 2008; Ghanem et al., 2015;
Singh et al., 2022). Another important factor that can influence
gene expression is epigenetic modifications. Epigenetic modifi-
cations are changes to the structure of DNA or the proteins that
interact with it, which can affect how genes are expressed. For
example, DNA methylation and histone modifications can
silence or activate certain genes, depending on the specific
modifications that occur. Also, gene expression in plants is
influenced by interactions between different genes. Some genes
act as regulators, turning others on or off based on the plant's
development or environmental conditions. These interactions
lead to complex traits controlled by multiple genes. Then the
relationship between genes and their expression is dynamic and
influenced by genetics, environment, and epigenetics. Under-
standing these factors is key to improving crop yields and sus-
tainability in agriculture (Pfluger and Wagner, 2007; He et al.,
2011; Morrell et al., 2011; Yin et al., 2017; Chen et al., 2019;
Pieruschka and Schurr, 2022; Xiao et al., 2022).
3. Plant phenotyping technology

3.1. The key technology to unlock the potential of plant system

The integration of agronomy, plant ecology, and genetics
through plant phenotyping has emerged as a powerful tool for
advancing agricultural research. However, traditional field-based
evaluation of plant phenotypes can be time-consuming and
inefficient (Li et al., 2021). To address this challenge, High-
throughput field phenotyping (HTP) has been developed inte-
grating advanced sensing technologies and data processing
techniques to enhance efficiency, while also demonstrating non-
destructive characteristics and high reproducibility (Neumann
et al., 2015).

HTP systems utilize mobile platforms and advanced sensors
to autonomously gather data in the field, reducing the need for
human intervention (Neumann et al., 2015; Kirci et al., 2022).
Recent advancements in image processing have propelled
sensor-based crop monitoring into widespread use, overcoming
previous limitations in phenotyping research. Despite these im-
provements, field phenotyping remains a critical bottleneck for
agricultural genetic advancements (Roth et al., 2020). Ground and
Aerial HTP Systems have been developed, each with distinct
advantages. Ground systems offer higher payload capacity for
heavier sensors and equipment, ensuring superior data quality
by controlling environmental variables and minimizing suscep-
tibility towind. Aerial systems, on the other hand, offer enhanced
efficiency and coverage, allowing for broader data collection.
Current trends emphasize the shift towards autonomous phe-
notyping robots for data collection, replacing earlier human-
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operated tractors and pushcarts (Araus and Cairns, 2014; Li et al.,
2021). Sensors for Phenotypic Measurement offer diverse capa-
bilities. Conventional phenotyping robots are also consisting of
mobile platforms equipped with a range of sensors, including
phenotyping sensors for measuring phenotypic features and
perception sensors for navigation. Phenotyping sensors can be
non-contact (e.g., LiDAR, RGB-D cameras, multispectral, hyper-
spectral, thermal, stereo sensors) or contact-based. RGB cameras,
widely used for their ability to count organs and assess plant
shape, remain popular. For detailed spectrum information, mul-
tispectral, hyperspectral, and thermal cameras prove more
beneficial than RGB counterparts. Multispectral and hyper-
spectral cameras facilitate the evaluation of vegetation indices,
aiding in identifying factors like fruit ripeness, stressors, and
diseases. Thermal cameras, sensitive to plant temperature and
water supply health, require careful environmental monitoring
for accurate calibration. Perception sensors, especially in Phe-
notyping Robots aid in localization and path planning, with
penetrometers being a common example (Colaço et al., 2018; Ku
et al., 2023; Zhang et al., 2023).

HTP's comprehensive approach enables the simultaneous
assessment of chlorophyll distribution, photosynthetic gene
expression, fruit quality parameters, and potentially flavor
compounds, offering a holistic view of the intricate interactions
at play. This aligns with the pursuit of fundamental biological
insights. Simultaneously, HTP's capacity to generate extensive
datasets encompassing diverse genotypes and environmental
conditions provides actionable insights for applied plant science.
By integrating genetic analyses, like QTLmapping, with HTP data,
we can identify genomic regions associated with fruit quality
traits, guiding breeding efforts to develop varieties that balance
production traits with flavor and quality, aligning with the goals
of crop improvement and sustainable agriculture. The contrast-
ing perspectives of (Powell et al., 2012) andMattia and Scott (2017)
on tomato fruit traits present a valuable opportunity to leverage
high-throughput phenotyping (HTP) methodologies, contributing
to ongoing debates with implications for research questions in
both pure biological and applied plant science programs. In
bridging the gap between biological understanding and practical
crop improvement, HTP emerges as an interdisciplinary tool
capable of addressing complex debates and informing research
questions across diverse contexts. The study by (Bhandari et al.,
2023) also highlights the significant scope for high-throughput
phenotyping (HTP) and the value of quality manually curated
data in advancing our understanding of complex traits, particu-
larly in fresh-market tomato breeding programs. Their emphasis
on objective yield assessment, the limitations of manual har-
vesting practices, and the challenges associated with environ-
mental influences on yield traits underscores the potential of HTP
to provide standardized and reproducible phenotypic data. HTP,
when integrated with genetic analyses such as GWAS and
genomic selection (GS), offers an opportunity to improve the ac-
curacy of identifying genetic associations with yield-related
traits. Moreover, the study's insights into positive/negative
allele effects for various traits emphasize the need for a
comprehensive understanding of the genetic basis of complex
traits beyond yield, a task where HTP's ability to capture diverse
traits makes it a promising tool (Fig. 2). HTP, combined with
quality curated data, can enhance our ability to dissect trait
genetics, address environmental interactions, and support
informed breeding decisions, ultimately leading to improved
varieties with enhanced yield and quality characteristics
(Bhandari et al., 2023). The integration of phenotype technology,
encompassing advanced sensors and autonomous robotics,
holds immense promise for unlocking the potential of plant
systems (Arakeri et al., 2017; Eraslan et al., 2019). These tech-
nologies bridge the gap between genetics and phenotypic traits,
offering unprecedented insights into plant behavior and in-
teractions with the environment. As the field of plant pheno-
typing continues to evolve, the synergy between genetics,
phenomics, and machine learning will drive innovations in
agriculture, enabling the development of more resilient and
productive crop varieties.

These techniques identify candidate genes that can be intro-
duced into crops through genetic engineering or genome editing.
In contrast, molecular breeding employs molecular markers to
find genomic areas connected to desirable traits when breeding.
As a result, these techniques support the development of crops
with enhanced agronomic traits and phenotypes.
3.2. Advanced imagery technologies in high-throughput
phenotyping

In recent years, significant strides have been made in the
development of ground-based and aerial high-throughput phe-
notyping platforms, encompassing diverse configurations such
as fixed, vehicle-based, self-propelled, and portable systems
(Busemeyer et al., 2013; Zhou and Nguyen, 2021). Portable plat-
forms rely on human operators or wheeled carts for mobility,
while fully automated facilities integrate robotic mechanisms,
precise environmental control, and sophisticated sensing
equipment. Aerial phenotyping platforms, including satellites,
low-flying aircraft, and unmanned aerial vehicles, represent
another dimension of phenotypic assessment. Both ground-
based and aerial platforms offer valuable means to accurately
evaluate plant growth and development, although each approach
has inherent limitations. The cost-intensive nature and safety
concerns associated with robotic platforms pose challenges,
while vehicle-based platforms hinge on skilled operators (Fig. 3).
Stationary systems face limitations in coverage, and portable
solutions might compromise effectiveness. Aerial platforms, on
the other hand, grapple with issues of limited resolution and
payload capacity. A diverse array of imaging technologies plays a
pivotal role in facilitating plant phenotyping. Two- or three-
dimensional imaging systems enable direct measurement of
plant morphological attributes, encompassing characteristics
like color, size, shape, texture, and architectural features of
various plant parts (Ruixiu et al., 1989; Montes et al., 2007;
Neumann et al., 2015). Furthermore, physiological traits and
pathological indications stemming from pests and diseases can
be either directly or indirectly detected using imaging methods
based on visible light, thermal, fluorescence, spectral, and three-
dimensional techniques (Abebe et al., 2023). Notable examples of
imagery captured through various methods for crop monitoring
are documented (Araus and Cairns, 2014). As technology ad-
vances, these innovative imaging approaches continue to rede-
fine the landscape of high-throughput phenotyping, offering
unprecedented insights into plant traits and health.



Fig. 2 Comparative genomics, transcriptomics and functional genomics are useful tools in marker-assisted breeding for improving
crops
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3.2.1. Visible light imaging
The primary instruments for evaluating the morphological

characteristics (color, shape, size, and texture) of plants are
visible-band imaging devices. Digital red-green-blue (RGB) cam-
eras are now reasonably priced and appropriate for both ground
and aerial applications thanks to advancements in technology.
Digital single lens reflex (SLR) cameras are the go-to option for
many phenotyping applications due to their quickness and good
quality in low light. This imaging technology can use 2D pictures
that operatewithin the samewavelength range as the human eye
(between 400 and 700 nm) to analyze various physical features
and document changes in plant growth. However, 3D imaging
techniques have also been developed to provide more accurate
measurements of morphological characteristics by displaying



Fig. 3 The image depicts various types of equipment used for capturing visual data, and the corresponding data obtained from using
each device
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spatial and volumetric information of phenotypic images.
Although being the most straightforward approach for plant
phenotyping, its disadvantage is that visible pictures only convey
physiological information, and the most frequent issue is the
overlap of neighboring leaves and background soil during seg-
mentation (Duan et al., 2011; Borisjuk et al., 2012; Li et al., 2014;
Colaço et al., 2018).
3.2.2. Infrared imaging
Infrared imaging is a powerful tool in phenotyping as it allows

for non-destructive and non-invasive monitoring of plant phys-
iological processes. Infrared imaging operates by detecting ther-
mal radiation, which is the heat emitted by objects. The warmer
an object is, the more thermal radiation it emits. Radiation pic-
tures can be screened using either a near-infrared (NIR) or a far-
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infrared (Far-IR, also known as IR thermal) imaging technology.
Due to the fact that healthy plants reflect a significant amount of
NIR light, several studies have combined visual and NIR imaging
to identify vegetative indices (800e1 400 nm). Moreover, soil and
unhealthy plants reflect considerablymore red light as compared
with healthy plants (Yang et al., 2013). The main benefit of using
visible light andNIR imaging is being able to gauge howplants are
responding to various stresses. When nitrogen status is stressed,
multi-trait screening and NIR digital imaging approaches are
more appropriate (Rajendran et al., 2009). Infrared thermal im-
aging can be used to see temperature changes for drought resis-
tance. A thermal infrared imaging approach has been developed
that can analyze mutant screens, tissue tolerance, osmotic
tolerance, drought tolerance, salinity tolerance, and Naþ exclu-
sion in both labs and fields. Comparisons of chlorophyll pig-
ments, leaf color, and canopy temperature may be made using it
(Merlot et al., 2002; Munns et al., 2010). Infrared imaging can be
used to detect changes in photosynthesis activity, which can
provide insights into a plant's growth and development and is
useful for plant breeding programs, where the goal is to select
plants with desirable traits, such as drought tolerance or disease
resistance.

3.2.3. Fluorescence imaging
Fluorescence imaging is a valuable tool applicable in both

controlled laboratory environments and field settings for
assessing the metabolic health and photosynthetic capacity of
plants. This technique involves stimulating a plant's photosys-
tems and measuring the resulting fluorescence emitted by the
chlorophyll complex as it absorbs light with a shorter wave-
length. The intensity of fluorescence directly reflects the plant's
efficiency in utilizing absorbed light, making it a reliable indicator
of its ability to absorb actinic light (Li et al., 2014). Multi-color
fluorescence imaging, extending across the red to far-red and
blue to green regions, enables the simultaneous collection of
fluorescence emissions, providing an efficient approach for
investigating the in vivo photosystem II status (Maxwell and
Johnson, 2000). While the power requirements have historically
confined fluorescence imaging mostly to controlled settings
(Baker and Rosenqvist, 2020), its key advantage lies in its ability to
illuminate the photosynthetic capacity of plants. Through
measuring chlorophyll fluorescence, we can evaluate photosyn-
thetic efficiency, gauge plant stress levels, and explore responses
to environmental challenges like drought, heat, and nutrient
deficiencies. Such insights not only aid in understanding adap-
tive mechanisms but also foster the development of more resil-
ient crop varieties (Giovannoni, 2001; Jansen et al., 2009; Li et al.,
2021). In essence, fluorescence imaging stands as a potent tool for
unraveling the intricate dynamics of plant health, growth, and
productivity, with broad implications for both research and
agricultural advancements.

3.2.4. Spectral, thermal and other imaging
Spectral imaging has emerged as a promising tool for high-

throughput phenotypic analysis of plants, benefiting from
ongoing technological advancements that enhance spectral and
spatial resolutions, as well as stability in various environmental
contexts. While frequently applied in controlled settings, this
technology has proven successful even on large-scale field
phenotyping platforms like aerial vehicles (helicopters, balloons,
drones, and cranes). Thermal imaging offers a wide measure-
ment range, high accuracy, and sensitivity, making it valuable for
non-contact and automated in-situ measurements. Unlike con-
ventional temperature monitoring methods, thermal cameras
enable high-resolution temperature measurement across an
area. However, accurate calibration is challenging due to envi-
ronmental influences such as soil background and meteorolog-
ical factors, necessitating adjustments (Prashar and Jones, 2016).
Advancements in optical 3D tomography, functional imaging,
and techniques like positron emission tomography (PET), mag-
netic resonance imaging (MRI), and F€orster resonance energy
transfer (FRET) sensors have enabled improved visualization of
plant physiological changes, stress, and photosynthetic perfor-
mance (Jones and Sirault, 2014; Deery and Jones, 2021).

Various imaging sensor technologies, including LIDAR sen-
sors, stereo vision, photon mixer devices (PMD), and time-of-
flight cameras, contribute to 3D mapping of plants. LIDAR, in
particular, is widely used for 3D canopy reconstruction due to its
accuracy, resilience, and high-resolution capabilities (Colaço
et al., 2018). Tomographic methods have demonstrated advan-
tages in root system identification, water transportation mea-
surement, and quantitative analysis of photosynthesis, vital for
root phenotyping (Lin et al., 2019; Lynch et al., 2021). The adoption
of 3D imaging technologies has been hindered by cost and com-
plex data processing challenges, which the evolving landscape of
technology and big data research might help overcome. Despite
the potential, issues such as the cost and scanning times of CT
imaging need to be addressed (Downie et al., 2015). Notably, the
acquired images from various methods necessitate thorough
analysis and processing before the examination of plant pheno-
typic traits can take place. The ongoing convergence of advanced
imaging techniques and data analytics holds the promise of
revolutionizing plant phenotyping and advancing our under-
standing of plant traits in unprecedented ways. Image processing
requires some basic techniques, and the most crucial pre-
processing step is often featuring extraction, followed by picture
segmentation (Fig. 4). The intended plant attributes are subse-
quently deduced through data analysis from these features (Li
et al., 2014). HTP in plants and the broader domains of com-
puter vision and robotics share intriguing similarities and distinct
differences, illuminating the interdisciplinary nature of modern
scientific exploration. These fields converge at the intersection of
cutting-edge technology and biological understanding, albeit
with unique nuances that underscore their respective focuses.
Similarities arise in the core principles that underpin HTP, com-
puter vision, and robotics. All three areas emphasize the extrac-
tion and interpretation of visual information. Computer vision,
often driven by artificial intelligence, seeks to enablemachines to
comprehend visual data like images and videos, akin to the way
humans do. Similarly, HTP harnesses imaging technologies to
capture intricate plant traits and physiological responses,
unraveling hidden patterns through data-driven analyses. Ro-
botics, on the other hand, aims to imbue machines with auton-
omy and intelligence to interact with the physical world, bearing
semblance to how plants interact with their environment to
adapt and grow. Yet, dissimilarities arise from the domains' pri-
mary objectives. Computer vision and robotics frequently center
on navigation, manipulation, and decision-making in real-time



Fig. 4 Image processing (A) and Segmentation and data Analytics (B)
(A) In image processing, coding, compression, description and classification are important preprocessing techniques. (B) Segmentation
and data Analytics. Segmentation is the process of dividing the image into meaningful regions or objects, such as leaves or stems. This
can be done using techniques such as thresholding, edge detection, or region growing. Feature extraction is a crucial step that helps to
identify and extract relevant features from an image. Feature extraction involves identifying and extracting relevant features from the

segmented images, such as color, texture, or shape.
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scenarios, often in uncontrolled and dynamic environments.
Contrastingly, HTP in plants is primarily concerned with quan-
tifying and understanding biological phenomena, ranging from
growth patterns to stress responses. The controlled settings of
greenhouses and laboratories lend themselves to detailed ob-
servations, in contrast to the unpredictable outdoor environ-
ments common in robotics and computer vision applications
(Haug and Ostermann, 2015; Arakeri et al., 2017; Rose and
Chilvers, 2018; Zhao et al., 2020; Abbasi et al., 2022).

Furthermore, the dimensions of time and scale in these do-
mains diverge. Computer vision and robotics often operate in
rapid, dynamic time frames, requiring real-time decision-making
(Arakeri et al., 2017). HTP, conversely, spans various temporal
scales, from trackingminute physiological changes over weeks to
studying plant evolution across generations. This temporal
variance reflects the distinct biological rhythms inherent to plant
life. The confluence of HTP in plants, computer vision, and ro-
botics showcases the transformative potential of interdisci-
plinary collaboration. While the objectives of each domain may
differ, the shared pursuit of unlocking patterns and insights from
visual data underscores their interconnectedness (Rose and
Chilvers, 2018; Yang et al., 2020; Abbasi et al., 2022). Bridging
these domains enriches our understanding of both the biological
world and the technologies that empower us to explore it.

4. Omics to phenotyping

The study of omics, encompassing fields like genomics, pro-
teomics, metabolomics, and more, plays a pivotal role in unrav-
eling the genetic and molecular basis of traits in plants,
particularly in the context of their responses to the environment
and efforts to enhance crop growth (Zhang et al., 2023). Identi-
fying the genes that confer specific characteristics is crucial for
advancing our understanding of planteenvironment interactions
and accelerating crop development. The ultimate goal is to
identify genes and mechanisms that influence crop productivity,
a central objective in plant genomic research (Abebe et al., 2023).
Various methodologies have been devised within genomics to
pinpoint and characterize genes responsible for desired traits in
crops. Techniques like genome and transcriptome sequencing,
microarray analysis, RNA-seq gene expression profiling, and
map-based cloning are employed to uncover these candidate
genes (Pevsner, 2015; Li et al., 2021; Khan et al., 2023). However,
understanding the complex interplay between genetic informa-
tion and observable traits remains a formidable challenge in the
realm of crop science (Gao et al., 2023). The emergence of high-
throughput techniques and advanced plant phenotyping plat-
forms in recent years has brought newfound efficiency and pre-
cision to the assessment of multiple plant traits. These
innovations enable us to gain insights into how different envi-
ronmental conditions impact various aspects of plant biology,
including growth, development, and reproduction (Metje-Sprink
et al., 2020; Prakash et al., 2022).

A critical bridge between genomics and phenomics is func-
tional genomics. This approach involves delving into the func-
tional aspects of genes and their interactions within living
organisms. Techniques like gene knockouts, which intentionally
deactivate specific genes to observe resulting phenotypes, are
instrumental in this pursuit. This method has been extensively
applied in crop legumes, where it has contributed to the devel-
opment of cDNA libraries, the production of expressed sequence
tags (ESTs), gene expression analysis, and the extraction of
functional data (Yang et al., 2013; Pevsner, 2015). Furthermore,
the field of bioinformatics offers a powerful avenue for synthe-
sizing and analyzing the vast amount of data generated by both
genomics and phenomics. Through sophisticated computational
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methods, bioinformatics integrates disciplines like computer
science, biology, statistics, and artificial intelligence to address
intricate biological questions at themolecular level. By leveraging
data from genome sequencing, gene expression profiling, and
high-throughput phenotyping, we gain valuable insights into the
genetic underpinnings of observable traits (Pevsner, 2015;
Montesinos-L�opez et al., 2021; Zhang et al., 2023). In essence, the
synergy between omics approaches and phenotyping provides a
comprehensive perspective on the intricate relationship between
an organism's genetic makeup and its observable characteristics.
Also, omics approaches provide comprehensive and multi-
dimensional insights into the molecular and genetic un-
derpinnings of phenotypes (Yang et al., 2013; Prakash et al., 2022;
Interdisciplinary Plant Science Consortium, 2023). These ad-
vancements not only shed light on the molecular mechanisms
underlying desired traits in crops but also hold promise for
developing more productive crop varieties capable of thriving in
challenging environments (Khan et al., 2023). They enable us to
better understand the complexity of biological systems, identify
biomarkers for diseases, predict responses to treatments, and
unravel the intricate relationship between an organism's genes,
environment, and observable traits, ultimately advancing our
knowledge of biology and medicine.

5. Epigenetic modifications

Epigenetics, an enthralling realm within genetics, has
enriched our comprehension of how genes influence traits, a
puzzle perplexing scientist for decades (Varotto et al., 2020). It
extends genetics by unravelling how genes interact with their
products to shape plant traits (Waddington, 2012). In contempo-
rarymolecular biology, its scope has narrowed to scrutinize DNA-
related processes regulating phenotype, and transcending DNA
sequence. This field's success lies in applications like leveraging
epigenetics in plant breeding and tracing heritable marks across
generations to enhance crop traits (Slotkin, 2016). Inherited yet
nonconforming to traditional patterns, modifications like DNA
methylation, histone tweaks, chromatin remodeling, and small
RNA activity drive this change (Varotto et al., 2020). DNA
methylation, particularly, holds promise as a source of crop
fitness variation. It influences vital traitsdseed dormancy, flow-
ering time, yielddand its partially heritable patterns unveil epi-
genetics' role in plant evolution and domestication (Liu, 2003;
Zhang et al., 2013; Song et al., 2017). Grasping DNA methylation
empowers breeders to craft favorable changes while curbing
undesirable epigenetic shifts stemming from breeding practices
(Stroud et al., 2013; Stelpflug et al., 2014; Zhang et al., 2014; Han
et al., 2018; Lin et al., 2019).

In recent times, there have been remarkable advancements in
the field of plant epigenetics, particularly in the area of histone
post-translational modifications (PTMs) and DNA methylation.
However, more recently, attention has turned to the chemical
modifications occurring on RNA molecules, such as 5-
methylcytosine (m5C) and N6-methyladenosine (m6A), which
have emerged as a novel layer of epigenetic marks. These find-
ings have been particularly evident in model plants like Arabi-
dopsis thaliana, shedding light on the intricate mechanisms by
which these RNA modifications influence gene expression. As
research has progressed, these novel epigenetic marks have also
been identified in important horticultural species like tomato
(Solanum lycopersicum) and poplar (Populus trichocarpa), expanding
our understanding of their roles beyondmodel organisms. Recent
research has uncovered DNA methylation's crucial role in gov-
erning important agricultural traits such as heterosis, fruit
ripening, and stress responses (Kathiria et al., 2010; Furner and
Matzke, 2011; Kou et al., 2011; Meyer, 2011; Xing et al., 2015;
Wang et al., 2016; An et al., 2017). DNA methylation in plants is
vital for processes like fertilization, gametogenesis, and devel-
opmental crosstalk with histone modifications (Johannes et al.,
2009; Verhoeven et al., 2010). Long non-coding RNAs (lncRNAs)
are significant players in the epigenetic control of gene expres-
sion. Cao and colleagues initially detected 2 857 lncRNAs from
existing RNA-seq data in potato plants. They further focused on
lncRNAs that exhibited differential responses (DELs) in a resis-
tant potato variety when faced with Phytophthora infestans in-
fections, the causal agent of late blight disease. Using the GENIE3
algorithm, which employs a random forest approach, they
established the directional regulatory connections between these
DELs and their target genes. By employing enrichment analyses,
this approach enabled the us to deduce the potential involve-
ment of these DELs in enhancing potato resistance against Phy-
tophthora infestans. Jubair et al. introduced a novel approach. Their
transformer model, capitalizing on genetic marker relationships,
outperforms existing methods, emphasizing the transformer's
potential in genomic prediction. Notably, they streamline trans-
former training and gene identification for disease resistance by
innovative marker selection. This research employs machine
learning to identify plant resistance proteins, enhancing path-
ogen adaptation and reducing susceptibility. Machine learning
has been used to discover various epigenetic modifications in
plants, uncovering novel insights into gene regulation, stress
responses, and developmental processes (Fig. 5).

Numerous machine learning tools have emerged to identify
resistance proteins, yet refinement is needed. Chen et al. have
introduced an advanced tool that surpasses current ones by
employing a stacking algorithm and factoring in residue pairwise
energy. This advancement deepens insight into plant-pathogen
adaptation and aids in cultivating disease-resistant crops. In
recent times, machine learning has demonstrated its capability
to handle intricate data, providing a platform to unravel the ge-
netic and epigenetic foundations of vital agricultural traits. DNA
methylation patterns inArabidopsis thalianawere examined using
machine learning, leading to the discovery of conserved
methylation signatures (Takuno and Gaut, 2012). A similar
approach may have been employed to investigate histone
modification patterns in plants (Zhang et al., 2006). Another study
applied machine learning to predict and analyze transcription
factor binding sites in Arabidopsis, shedding light on the regu-
latory DNA landscape (O'Malley et al., 2016). Additionally, a study
utilized machine learning to predict Chromatin Accessibility
(Zhang et al., 2023). Although not plant-specific, this example
showcases the use of machine learning to predict chromatin in-
teractions, which could potentially be adapted for plant research.

6. Machine learning approaches for trait discovery

Machine vision technology has found successful applications
across various agricultural domains, including but not limited to
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yield prediction, assessing the physiological response of plants to
stressors, enhancing precision farming, sorting and categorizing
fruits, and facilitating automated phenotyping (Diaz-Garcia et al.,
2016). ML approaches are becoming increasingly important in
plant biology research, particularly in the area of plant trait dis-
covery. Machine learning models can be trained to predict plant
traits based on environmental variables, and to analyze plant
images and genomic data to identify genetic and environmental
factors that affect plant growth and development. These ap-
proaches can also be used to automate plant phenotyping and
collect large-scale phenotypic data sets, which can help to iden-
tify new plant traits important for crop productivity and resil-
ience. It can be used to analyze plant images and extract features
such as leaf area, chlorophyll content, and leaf shape (Zhang
et al., 2023). This can be useful for studying plant development
and for identifying genetic and environmental factors that affect
plant morphology (Wallace et al., 2018; Eraslan et al., 2019).
Modern breeding pipelines employ two distinct paths, each
suited to specific types of traits. Data-driven modeling is used for
quantitative traits, which are primarily determined by genetic
background, while the causal genes of polygenic traits, which are
determined by specific genes with major effects, are explicitly
characterized to enable beneficial alleles to be pyramided (Ferr~ao
et al., 2023).

Machine learning and artificial intelligence algorithms can be
used to identify patterns and relationships between genetic and
Fig. 6 Key issues that can be effectively addressed throug
phenotypic data. The rapid growth in data capture and machine
learning techniques has empowered scientists to efficiently
obtain, organize, analyze, and interpret biological data. This
analytical approach aims to uncover hidden, non-trivial, and
intriguing patterns that can have significant implications for
various biological processes and applications. Gene expression
profiling is the process of simultaneously measuring the activity
of thousands of genes to obtain a comprehensive overview of
cellular function, and the analysis of this data using machine
learning or statistical methods can reveal intrinsic patterns that
aid in understanding the underlying causes of important traits
(Barah et al., 2021; Danilevicz et al., 2022). The utilization of the
technologies mentioned above has resulted in the accumulation
of vast quantities of gene expression data, offering valuable in-
sights into diverse biological processes within living organisms.
This wealth of data provides a foundation for tackling various
challenges through gene expression data analysis. For these
analysis, appropriate statistical and machine learning tech-
niques including data clustering, association mining and classi-
fication are widely involved (Fig. 6) (Barah et al., 2021; Ferr~ao et al.,
2023; Yan and Wang, 2023).

In the field of plant biology and precision-designed breeding,
genome editing has emerged as a potent approach for addressing
single-gene traits. However, the harnessing of multi-omics data
has become increasingly critical, and machine learning (ML)
and deep learning (DL) are poised to play pivotal roles. ML
h gene expression data analyses with ML techniques
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applications extend across large-scale omics research, encom-
passing the prediction of genetic elements, molecular structures,
and regulatory components like promoters, enhancers, TF-
binding sites, and epigenetically modified regions. Nonlinear
techniques, such as convolutional neural networks and feed-
forward deep neural networks, have proven valuable for
improving genomic selection (GS) by accounting for environ-
mental interactions and subtle marker interactions. These
methods offer more precise predictions for high-dimensional
datasets, illuminating connections between related traits. While
traditional ML techniques and mixed linear models remain ac-
curate for smaller datasets, DL excels at feature extraction from
extensive datasets, accounting for feature interaction effects.
Expanding beyond genomic best linear unbiased prediction
(GBLUP) methods holds promise for more accurate phenotype
predictions in GS problems, ushering in a new era of precision
breeding (P�erez-Rodríguez et al., 2012; Montesinos-L�opez et al.,
2018; Jubair et al., 2021; Danilevicz et al., 2022). Fig. 7 illustrates
the synergy between machine learning and plant biology,
showcasing how the computational power of machine learning
enhances the analysis of complex plant data and contributes to
advancements in agriculture, crop improvement, ecological un-
derstanding, and sustainable resource management.

In tandem with these advances, the integration of various
gene regulatory network algorithms and machine learning
techniques has emerged as a powerful strategy for identifying
and validating crucial genes and mutations related to specific
plant traits. Prioritizing candidate genes, even within quantita-
tive trait loci (QTL) identified through genome-wide association
studies (GWAS), has been greatly improved through techniques
such as penalized regression, Bayesian approaches, gradient
boosting machines, and deep learning. Specialized tools like
Fig. 7 The systematic application of machine learning techniqu
processing, feature extraction, model
QTG-Finder have been developed to harness machine learning
models for post-GWAS analysis in plants, further enhancing the
accuracy of gene prioritization (Diaz-Garcia et al., 2016; Cui et al.,
2020). Deep learning models, well-suited for handling complex,
unstructured imaging data, have revolutionized plant phenomics
and precision agriculture through the application of transfer
learning and pretrained deep learning model architectures.
These advancements have the potential to significantly enhance
genotype-to-phenotype (G2P) prediction in plant breeding,
particularly for complex traits and under challenging environ-
mental conditions (Varshney et al., 2005;Wallace et al., 2018; Park
et al., 2019; Danilevicz et al., 2022; Ferr~ao et al., 2023). Genomics-
assisted breeding, powered by machine learning models like
convolutional neural networks and Bayesian approaches, has the
capacity to unlock new frontiers in predicting complex traits
across a variety of crops, enabling the development of flavorful
varieties and enhanced agricultural outcomes.

The integration of phenomics, genetics, and ML stands as a
promising avenue for optimizing phenotypic traits through the
application of high-throughput phenotyping platforms (Zhang
et al., 2023). In recent years, substantial progress has been
made in the development of these platforms, which encompass a
variety of configurations, including ground-based and aerial
systems. Ground-based platforms, ranging from fixed in-
stallations to portable setups, offer the capacity to directly mea-
sure morphological characteristics such as color, size, shape, and
architecture of plant parts. These traits can provide critical in-
sights into plant growth and development. Aerial platforms, such
as satellites and unmanned aerial vehicles, offer an alternative
perspective by capturing large-scale data, although theymay face
limitations in terms of resolution and payload (Duan et al., 2011;
Danilevicz et al., 2022; Yan and Wang, 2023). The convergence of
es to plant biology research, encompassing data acquisition,
training, and biological integration
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phenomics, genetics, andML takes advantage of the vast datasets
generated by high-throughput phenotyping. By incorporating
genetic information, we can unravel the genetic basis of observed
traits, identifying specific genes associated with desired charac-
teristics. Machine learning algorithms, adept at recognizing
intricate patterns within complex datasets, play a pivotal role in
deciphering the relationship between genomics and phenomics.
This integrated approach enables the creation of predictive
models that link genetic variations to distinct phenotypic out-
comes, thus facilitating the selection of crop varieties with
optimal traits for specific environments or conditions (Araus and
Cairns, 2014; Barah et al., 2021; Yan andWang, 2023; Zhang et al.,
2023). The amalgamation of these disciplines empowers preci-
sion agriculture and targeted breeding efforts, ultimately leading
to the development of crops that exhibit enhanced productivity,
resilience, and adaptability. As advancements continue to refine
high-throughput phenotyping technologies and analytical tech-
niques, the integration of phenomics, genetics, and ML emerges
as a transformative strategy in shaping the future of agriculture
and crop improvement (Ferr~ao et al., 2023).

7. HTP for precision farming

In order to increase agricultural output and satisfy the
expanding demands of the human population, it is crucial to
establish the link between genotype and phenotype. This will
help food production maintain pace with population expansion.
In order to understand how genes and characteristics interact,
phenotyping, which includes observing and quantifying phys-
ical properties in plants, is equally as crucial as genotyping.
Therefore, to achieve the optimum phenotype and provide
plants with the ability to produce superior and steady yields in a
changing environment, advances in technology and “omics”
techniques are also being utilized. In the field of molecular plant
Table 1 Major challenges and Limitations a
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modern horticulture (Table 1).
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With the fast development of facilities and algorithms, light
detection and ranging offers a potent new tool for 3D phenotyp-
ing. A great deal of effort has been put into utilizing LIDAR in
agriculture and horticulture field to explore static and dynamic
changes of structural and functional traits. Moreover, these de-
velopments enhance 3D plant modeling across many
spatialetemporal scales and disciplines, making it simpler and
less expensive to associate genes with environmental practices
and analyze environmental practices, which provides fresh per-
spectives on breeding and management. LIDAR has enormous
promise for forestry, horticulture, and grass phenotyping in
addition to agricultural phenotyping. Although plant modeling
and phenotyping have significantly improved owing to LIDAR, its
potential for use in breeding and management has not yet been
completely investigated (Topp et al., 2013; Lin, 2015; Colaço et al.,
2018; Jin et al., 2021). Overall, improved phenotyping is a vital tool
for modern horticulture, allowing growers and plant breeders to
increase crop output, quicken breeding processes, improve pre-
cision farming, and encourage more environmentally friendly
agricultural techniques. It's essential to choose the correct tools
for different phenotyping tasks. High throughput phenotyping is
essential in horticulture as it allows for the recognition and
description of desirable characteristics in crops. Precise pheno-
typing enables the choice of superior varieties that exhibit
enhanced productivity, disease resistance, and quality (Fig. 4). It
also contributes to a deeper understanding of the genetic and
environmental factors that influence crop performance, sup-
porting targeted breeding and sustainable cultivationmethods in
horticulture. High-throughput phenotyping has gained signifi-
cant popularity in the field of horticulture for assessing and
characterizing a wide range of traits. These traits encompass
diverse aspects such as morphology, physiology, biochemistry,
yield potential, and responses to both biotic and abiotic stresses
(Abebe et al., 2023; Sheikh et al., 2023). Advanced phenotyping
enables plant breeders to identify promising crop varieties with
desired traits, leading to increased food security and improved
quality of life for farmers. This figure highlights the potential
benefits of advanced phenotyping, including accelerated
breeding efforts, precise assessment of plant properties, and
enhanced precision horticulture. It showcases how advanced
phenotyping can aid in reducing reliance on synthetic inputs,
optimizing resource utilization, and promoting sustainable and
environmentally friendly horticulture practices. Additionally,
improved phenotyping contributes to a better understanding of
plant responses to diverse environmental conditions, potentially
leading to new discoveries.

8. HTP for smart horticulture

In recent years, the field of plant biology and horticulture has
witnessed remarkable progress in HTP technologies, trans-
forming the way we understand and improve crops. Although
HTP greenhouse experiments cannot entirely replace field eval-
uations, they offer valuable insights into trait discovery and
development, particularly for ornamental plants and vegetables.
Automation and non-invasive imaging-based platforms have
gained traction, proving successful for monitoring and pheno-
typing within production pipelines (Neumann et al., 2015).
Moreover, technologies like ultrasonic and LiDAR sensors are
revolutionizing digital horticulture, enabling accurate measure-
ments of canopy structure, while image based HTP methods are
revolutionizing how we rapidly quantify traits, advancing both
precision horticulture and phenotyping across horticultural crops
(Colaço et al., 2018; Abebe et al., 2023).

A driving force behind these advancements is the integration
of machine learning and artificial intelligence (AI) into plant
phenotyping. AI is reshaping gene identification and validation
for specific traits, enhancing the precision of breeding efforts
(Ferr~ao et al., 2023). This combination of AI and high-throughput
physiological phenotyping, referred to as “Physiolomics” is
facilitating rapid assessment of dynamic physiological traits
under stress conditions, contributing to a deeper understanding
of plant responses (Lin et al., 2019). Simultaneously, AI's capa-
bilities are being harnessed to predict consumer-preferred flavors
and guide breeding strategies, responding to evolving market
demands for tastier and more nutritious crops (Ferr~ao et al.,
2023). Amidst these innovations, the horticulture industry is
poised for a significant transformation through the paradigm of
smart horticulture. Leveraging cutting-edge technologies like AI,
big data, and the Internet of things, smart horticulture envisions
a holistic approach across the entire production chain. This in-
cludes smart breeding, cultivation, transportation, and sales, all
aimed at maximizing productivity, minimizing resource use, and
ensuring sustainable growth (Zhang et al., 2013, 2023). This shift
towards data-driven decision-making and technology-driven
precision reflects a promising future for horticulture, where
innovation and optimization will be pivotal in addressing global
agricultural challenges. In present, the field of horticulture and
plant biology has witnessed a remarkable transformation fueled
by HTP technologies, ML, and AI. These advancements are
bridging the gap between basic scientific research and practical
applications in crop improvement. For instance, in a study
focusing on Indian pennywort, high-throughput phenotyping
was used to optimize irrigation schedules, resulting in improved
crop productivity and quality. This illustrates how the integration
of phenomics and technology can provide actionable insights for
enhancing the cultivation of medicinal plants (Theerawitaya
et al., 2023; Karunathilake et al., 2023). The application of HTP
phenotyping extends beyond medicinal herbs. In tree cultivation
of apple, the utilization of UAV-LiDARs for rapid 3D scanning and
architectural trait assessment exemplifies how technology can
streamline the evaluation of fruit tree cultivars. This approach,
compared to traditional methods like TLS, offers a high-
throughput solution for assessing architectural traits, demon-
strating the fusion of genetics, phenomics, and advanced tech-
nology in fruit tree breeding (Rojas-Bustos et al., 2023; Kwon et al.,
2024).

Moreover, the importance of advanced phenotyping technol-
ogies in addressing global agricultural challenges is underscored
by their potential to enhance crop productivity. By employing
robotics, high-tech sensors, and bioinformatics tools, we can
uncover the genetic basis of complex traits associated with plant
growth and development. This integrated approach of genotyp-
ing and phenotyping not only contributes to a deeper under-
standing of gene functions and environmental responses but also
provides relevant solutions to increase crop production. These
developments are pivotal in translating basic scientific knowl-
edge into practical strategies for addressing food security and
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sustainability concerns (Kumari and Munjal, 2023). The integra-
tion of phenomics, genetics, and cutting-edge technologies is
driving a profound transformation in horticulture and plant sci-
ence. These multidisciplinary approaches are not only opti-
mizing cultivation practices but also offering insights into genetic
traits and stress responses. This convergence of basic science and
applied research is poised to revolutionize crop improvement,
address global agricultural challenges, and shape the future of
sustainable agriculture.

9. Challenges and limitations

Advancements in phenotyping technologies have led to the
establishment of numerous phenomic facilities around the
world, dedicated to capturing precise data on various traits of
plants throughout their growth cycle. These facilities primarily
operate within controlled environments and utilize robotics,
automated image acquisition, and analysis to gather this
phenotypic data (Pieruschka and Schurr, 2019). These ap-
proaches often involve different types of sensors, cameras
operating across different wavelengths, and versatile platforms
such as moving plants along tracks, suspending sensors from
cables, or even using drones to collect signals from plant pop-
ulations (Sanaeifar et al., 2023). Despite these technological ad-
vancements, challenges persist in effectively using these tools to
understand the complex interactions between plants and their
environment, particularly in response to stress. Plants are highly
responsive to a multitude of signals from their surroundings,
including factors like light intensity, humidity, CO2 levels, and
soil moisture (Rosenqvist et al., 2019). How plants react to
different stress is both dynamic and adaptable. Complicating
matters, environmental conditions tend to be unstable and
change rapidly, even within controlled settings. For example,
plants undergoing drought stress will quickly exhibit varying
levels of soil moisture due to differences in their transpiration
rates. Furthermore, even under seemingly uniform conditions
(such as consistent greenhouse lighting), measurements taken
at different times can show discrepancies due to natural fluc-
tuations in light intensity throughout the day. This variability
underscores the limitation of studying isolated traits or con-
ducting measurements on single dates across multiple geno-
types, especially under stressful conditions (Bochner, 2003). The
comprehensive understanding of plant traits necessitates
acknowledging the dynamic interplay between plants and their
environment, requiring multiple measurements taken over time
to truly capture the intricate responses (Topp et al., 2013; Guo
et al., 2018; Arab et al., 2019).

Variables like fluctuating cloud cover, shifting angles and in-
tensities of sunlight, and variations in wind strength all present
difficulties for the algorithms utilized in automated phenotyping.
Plant traits, which are often the result of intricate interactions
between multiple genes and the environment, contribute to the
complexity of the task. Delving into the genetic foundations of
these quantitative traits requires the application of advanced
statistical methods due to their inherently challenging nature
(Singh et al., 2021; Gill et al., 2022). While machine learning
models excel at identifying correlations within data, they might
not necessarily uncover true causal relationships. Therefore,
grasping the underlying biological mechanisms and causal
connections is of paramount importance for deriving meaningful
insights in the field of plant science (Machwitz et al., 2021;
Ninomiya, 2022). Several challenges and limitations that arise
from this integrated approach are summarized in Table 1. In
essence, while the integrated approach to plant phenotyping
offers tremendous potential for advancing our understanding of
plant traits and responses, it is essential to recognize and address
these challenges to ensure the reliability and meaningfulness of
the insights gain.

10. Conclusion and future prospects

The convergence of physiology, genomics, and machine
learning has ignited a transformative era in plant trait discovery,
presenting unparalleled opportunities for understanding and
enhancing plant traits essential for agriculture, environmental
resilience, and ecosystem sustainability. This synergy enables us
to unravel intricate relationships between genetic makeup,
physiological mechanisms, and environmental responses,
elucidating traits that govern plant growth, stress resistance, and
productivity. However, as we navigate this cutting-edge land-
scape, policy implications surrounding data sharing, collabora-
tion, and regulations come to the fore. Striking a balance between
open data sharing for scientific progress and safeguarding intel-
lectual property rights is pivotal. Collaborative efforts across
academia, industry, and governing bodies are imperative to
establish frameworks that encourage equitable data access,
stimulate innovation, and ensure ethical research conduct. Reg-
ulatory measures should evolve iteratively to address challenges
posed by this dynamic field, upholding data privacy, fair usage,
and responsible AI deployment. In essence, the fusion of these
scientific disciplines holds promise for a greener future, under-
scoring the urgency of fostering a holistic approach that har-
nesses scientific advancement while upholding ethical and
regulatory considerations.

Machine learning has the potential to connect fundamental
science and practical plant breeding by utilizing biological knowl-
edge and omics data to create precision-designed breeding strate-
gies. These strategies can be knowledge-driven, using molecular
design to achieve specific breeding goals, or data-driven, using
genomic design to analyze large sets of data. In general, the inte-
gration of genomics, phenomics, and machine learning shows
great potential for precision-designedplant breeding. The future of
crop improvement and production lies in the integration of these
technologies to develop crops with improved yield, disease resis-
tance, nutritional content, and other important traits, ultimately
leading to more sustainable and efficient food production.
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