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A B S T R A C T

Pan-genomics can encompass most of the genetic diversity of a species or population and has proved to

be a powerful tool for studying genomic evolution and the origin and domestication of species, and for

providing information for plant improvement. Plant genomics has greatly progressed because of im-

provements in sequencing technologies and the rapid reduction of sequencing costs. Nevertheless, pan-

genomics still presents many challenges, including computationally intensive assembly methods, high

costs with large numbers of samples, ineffective integration of big data, and difficulty in applying it to

downstream multi-omics analysis and breeding research. In this review, we summarize the definition and

recent achievements of plant pan-genomics, computational technologies used for pan-genome con-

struction, and the applications of pan-genomes in plant genomics and molecular breeding. We also discuss

challenges and perspectives for future pan-genomics studies and provide a detailed pipeline for sample

selection, genome assembly and annotation, structural variation identification, and construction and

application of graph-based pan-genomes. The aim is to provide important guidance for plant pan-genome

research and a better understanding of the genetic basis of genome evolution, crop domestication, and

phenotypic diversity for future studies.

Copyright © 2022, The Authors. Institute of Genetics and Developmental Biology, Chinese Academy of

Sciences, and Genetics Society of China. Published by Elsevier Limited and Science Press. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The plant kingdom has amazing diversity and importantly pro-

vides a variety of resources and food energy intake for humans (Food

and Agriculture Organization of the United Nations, 1995). The esti-

mated number of land plant species is approximately 391,000, and

their genomes are unusually diverse and complicated with genome

sizes that vary dramatically from approximately 60 Mb to 150 Gb

(Pellicer et al., 2010; Fleischmann et al., 2014; Kuroiwa et al., 2016;

Willis, 2017). Polyploidization events and variations in the amounts of

repetitive DNA have played important roles in influencing the different

sizes of plant genomes, which are vital to plant speciation and evo-

lution (Paterson et al., 2010). The dynamics of transposable elements

(Jumper et al., 2021), along with self-incompatibility, have long been

recognized as significant evolutionary forces that contribute to plant

genome changes (Takayama and Isogai, 2005; Igic et al., 2008;
f Genetics and Developmental Bio

cess article under the CC BY-NC-
Ambro�zov�a et al., 2011; Ibarra-Laclette et al., 2013; Casacuberta

et al., 2016). All of these properties, high repetitive DNA content,

high degree of heterozygosity, and polyploidy, make it technically

challenging and time-consuming to generate high-quality plant

genome assemblies.

High-quality reference genome sequences are the prerequisite

and basis for promoting fundamental and applied research in plants

and animals. Triggered by developments in computing power,

sequencing technologies, and assembly methods, the genomes of

more than 700 plants species, from non-vascular to flowering, have

been released in the past 20 years (Sun et al., 2021). Third-generation

sequencing technologies, such as those that use the PacBio and

Oxford Nanopore platforms, can generate reads with significantly

increased lengths and they have been widely applied along with well-

established assembly algorithms to construct large and complicated

plant genomes at unprecedented high resolution (Koren et al., 2017;

Cheng et al., 2021; Niu et al., 2022). The 25.4 Gb high-quality genome

of Chinese pine, which is the largest gymnosperm genome released

so far, was constructed by combining long-read PacBio and Hi-C

sequencing technologies (Niu et al., 2022). A chromosome-scale
logy, Chinese Academy of Sciences, and Genetics Society of China. Published by

ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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genome assembly of bread wheat that is 14.66-Gb long with a contig

N50 length of 30.22 Mb has also been reported (Athiyannan et al.,

2022). The construction of high-quality assemblies of these very

large and complicated plant genomes indicates the significant

progress that has been made in giga-genome assembly. Further-

more, the emergence of high-fidelity (HiFi) sequencing technologies

along with haplotype-resolved assembly software have greatly

facilitated the exploration of polyploid and highly heterozygous plant

genomes (Cheng et al., 2021). Allele-aware autopolyploid and het-

erozygous genomes of cultivated alfalfa, potato, sugarcane, and tea

have been constructed by integrating HiFi and Hi-C data (Zhang

et al., 2018; Chen et al., 2020; Zhang et al., 2021b; Sun et al.,

2022). The advances in computing power and sequencing and as-

sembly technologies have promoted the construction of almost

complete genomes, even gap-free genomes, which has provided a

solid foundation for comparative genomics analysis among different
g g
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plant accessions and helped to minimize the negative effects caused

by incomplete genome assembly.

The dynamics of plant genomes and processes such as the

amplification of transposable elements, gene tandem duplication,

genome rearrangements, and mutations can lead to a continuum of

changes from single-nucleotide polymorphisms (SNPs), gene pres-

ence/absence variations (PAVs), to structural variations (SVs) that

provide the raw material for natural selection, phenotypic diversity,

and adaptation (McClintock, 1956; Gabur et al., 2019; Tao et al.,

2019). The availability of high-quality genomes of more and more

species has led to the realization that a single genome may not be

enough to reflect the landscape of a species because of the large

numbers of variations between accessions. Therefore, the “pan-

genome” concept was conceived to represent all the genetic infor-

mation of a species, including core genes that are present in all

strains and dispensable genes that are present only in a subset of
of pan-genomics. A: Definition and components of a representative pan-genome. The

-genome. The pan-genome can be broken down into a “core gene” that contains genes

trains. B: Pan-genome assembly approaches, including de novo assembly, iterative as-

r the assembly of pan-genome. Reads from shared genomic segments are indicated with

iterative approach, individual A’s genome is used as a reference and then the sequencing

pped are then assembled to construct non-redundant pan-genome. A pan-genome is

y following the paths of the graph. C: Focus of current pan-genome studies.
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strains (Tettelin et al., 2005) (Fig. 1A). The definitions and objectives of

pan-genome were then modified and developed since it was pro-

posed (Rasko et al., 2008; Snipen et al., 2009; Alcaraz et al., 2010;

Plissonneau et al., 2018), and the pan-genome can be either

sequence-based or gene-based (Golicz et al., 2020). Compared with

the gene-based pan-genome, a sequence-based pan-genome could

captures genic as well as nongenic sequences, such as TEs and

noncoding RNAs (ncRNAs), which play fundamental roles in the

structural organization and function in plant genomes (Tahir Ul Qamar

et al., 2020). Until now, pan-genomics studies in plants, including

rice, soybean, maize, wheat, cucumber, chickpea, and tomato, have

focused mainly on crop breeding, adaptation, and evolution (Hirsch

et al., 2014; Li et al., 2014; Schatz et al., 2014; Montenegro et al.,

2017; Wang et al., 2018; Zhao et al., 2018; Gao et al., 2019; Alonge

et al., 2020; Liu et al., 2020; Walkowiak et al., 2020; Hufford et al.,

2021; Li et al., 2022a). In this review, we briefly summarize the

recent major achievements and pipelines for pan-genome research,

and discuss potential challenges and perspectives for future pan-

genomics studies to provide a basis for applications related to crop

improvement.

Approaches for pan-genome construction

Recent advances in sequencing technologies have enabled the

assembly of high-quality reference genomes for a large number of

plants concurrently. However, how to integrate multiple genomes

from a subset of accessions and make the integrated genetic infor-

mation easily accessible to biologists remain challenging (Li et al.,

2020). Methods that have been used to construct pan-genomes

include de novo assembly, iterative assembly, and graph-based

assembly (Li et al., 2014; Schatz et al., 2014; Golicz et al., 2016a;

Danilevicz et al., 2020; Liu and Tian, 2020; Qin et al., 2021) (Fig. 1B).

The most straightforward way to construct a pan-genome is by de

novo assembly of the genomes of multiple samples, followed by

comparative analyses to detect all variant types and characterize the

identified genes as core or dispensable (Mahmoud et al., 2019). The

progress in long-read sequencing technologies and complementary

approaches such as the construction of Hi-C and BioNano maps

have made it feasible to obtain high-quality plant genomes at the

chromosome level, including telomere-to-telomere genome assem-

blies (Miga et al., 2020). The de novo assembly strategy copes well

with repeat regions, but it requires a high depth of sequencing reads

to build highly contiguous and accurate genome assemblies, which is

costly for large plant genomes and hundreds of reference genomes

for one species (Hurgobin and Edwards, 2017).

Unlike the de novo assembly strategy, the iterative assembly

strategy starts with the construction of a single reference genome,

and then the reads from other samples are sequentially mapped to

the reference genome. Unmapped reads are assembled and added

to the reference genome to construct a pan-genome of non-

redundant sequences (Golicz et al., 2016b). This method costs less

than the de novo assembly method because each sample can be

sequenced with low sequencing depth, which allows the pooling of

hundreds of samples. However, because there is no assembly pro-

cess, the iterative assembly method struggles to handle genomes

that contain a large number of repeat regions and it cannot detect

large SVs that are not spanned by single short reads (Jiao and

Schneeberger, 2017).

The graph-based assembly strategy for pan-genome construc-

tion uses a graph to represent diversity and variations relative to a

reference genome. The compacted de Bruijn graph is the one most

commonly used to integrate genetic information from different ac-

cessions of one species (Chikhi et al., 2015, 2016; Li et al., 2020). The

bi-directed variation graph has been used to integrate genetic vari-

ations across a population and label their possible locations on a
835
reference genome. Graph-based pan-genomes show significant

improvements in mitigating reference bias compared with traditional

linear genomes (Garrison et al., 2018). Currently, the construction

and application of graph-based pan-genomes are limited by the

complexity of plant genomes, such as the high repeat content and

polyploidy, and the lack of tools for common downstream analyses

and visualization of the graph. However, graph-based genomes have

been shown to have immense advantages over other methods,

implying that graph-based assembly strategies may have extensive

applications and promising prospects in the future.

Major achievements in plant pan-genomics

Pan-genomes for major crops, such as maize, rice, wheat, and

soybean, have been constructed based on high-quality genomes of

multiple samples, which has led to great progress in studies into the

evolution of plant genomes and the identification of key genes

associated with important agronomic traits (Zhao et al., 2018; Liu

et al., 2020; Hufford et al., 2021; Qin et al., 2021) (Figs. 1C and 2).

These studies have shown that the construction of a pan-genome

can eliminate deviations from a single reference genome as much

as possible and can present a nearly full view of the diversity within a

species (Khan et al., 2020).

Grain species

Major grain species include rice, wheat, maize, soybean, millet,

barley, oats, and sorghum, which are indispensable sources of en-

ergy in the human diet (Bansal et al., 2016). Because of their

importance, a major focus of plant pan-genome research has been to

obtain a full view of the genetic variations within each of these grain

species. The first plant pan-genome based on high-quality genomes

was released in 2014 for wild soybean, which provided a potentially

rich resource for improving the genetic diversity of cultivated soy-

bean that was lost during domestication (Li et al., 2014). In their

study, seven phylogenetically and geographically representative

accessions of wild soybean were de novo assembled and abundant

variations associated with agronomic traits were identified, including

biotic resistance, seed composition, flowering, and maturity time.

This study confirmed for the first time that a single genome did not

adequately represent the diversity within a species, and showed that

a large number of SVs and genes associated with important agro-

nomic traits were lost in the domestication process. The first graph-

based pan-genome was constructed based on the high-quality ge-

nomes of 26 representative wild and cultivated soybean samples

selected from 2898 deeply sequenced accessions (Liu et al., 2020).

Numerous genetic variations that could not be detected by short read

mapping were identified, and the influence of these variations on

genome evolution, key agronomic traits, and generation of new

genes was explored (Liu et al., 2020). This study broke through the

storage form of the traditional linear genome and the obtained graph-

based pan-genome provided an almost full view of the genetic var-

iations within soybean. This work was a milestone in plant genomics.

A more recently published pan-genome of 204 representative culti-

vated soybean was constructed based on a cladogram of 1007

soybean accessions from the GmHapMap data set, and 108 Mb of

novel sequences that contained 3621 protein-coding genes that

were absent from the reference genome, were detected

(Torkamaneh et al., 2021). Although this pan-genome may be un-

representative and incomplete to some extent, especially for large

SVs, because of the de novo assembly of short reads, it still provided

a relatively comprehensive gene pool in cultivated soybean.

A rice pan-genome dataset of the Oryza sativaeO. rufipogon

species complex was constructed by de novo assembly of 66

divergent accessions, and 23 million sequence variants were
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Fig. 2. Timeline and basic information for the released plant pan-genomes. The different sequencing technologies used to construct the pan-genomes are indicated using different

colors. Solid black circles indicate past events in plant pan-genomics. The technologies are indicated using colored rectangular boxes: light green, next-generation sequencing; dark

orange, hybrid sequencing; light blue, long-read sequencing. The sample size and species are indicated in the colored rectangular boxes.
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identified by inter-genomic comparisons with the Nipponbare refer-

ence genome (Zhao et al., 2018). Although this pan-genome was

constructed based on short reads rather than high-quality genomes,

it was still possible to trace the evolution history of important quan-

titative trait loci (QTLs) of different rice accessions, including traits

associated with flowering time, cold tolerance, grain weight, tiller

angle, and plant height. The most complete rice graph-based pan-

genome constructed so far is based on the high-quality genomes of

33 genetically diverse rice accessions (Qin et al., 2021). This is a

classic study that not only comprehensively detected genomic vari-

ations and their formation mechanisms, but also systematically

inferred their impacts on genome evolution, gene expression, crop

domestication, and adaptability to environment for the first time. A

pan-genome of maize was constructed using 26 inbred lines, and

103,033 pan-genes and 791,101 SVs were identified (Hufford et al.,

2021). This was the first high-quality pan-genome of maize and the

first to identify SVs associated with the DNA methylation rate, which

may contribute to phenotypic variation.

Genomic studies of wheat and barley, two of the most important

crop species worldwide, have been hindered by their large and

highly-repetitive genomes. The bread wheat cv. Chinese Spring

genome assembly was updated and the genetic diversity among 18

wheat cultivars was explored (Montenegro et al., 2017). Then, the

pan-genome of wheat was constructed by iterative assembly and

350 Mb of newly assembled sequence was added to the reference

genome; the variable genes were enriched mainly in the response to

environmental stress and defense. Although this pan-genome was

constructed based on short reads and may be incomplete to some

extent, it still provided the first variation map of a representative

wheat species and important guidance for the construction of high-

quality pan-genomes of plant species that have very large and

complex genomes. The first wheat pan-genome based on high-

quality genomes was constructed by integrating the genetic infor-

mation of 15 representative wheat varieties from global wheat

breeding resources to explore the genomic diversity of wheat.

Comparative analysis identified extensive structural rearrangements,

introgressions from wild relatives, and differences in gene content

that resulted from complex breeding histories, which provided a

basis for functional gene discovery and breeding (Walkowiak et al.,
836
2020). This study creatively overcame the challenges of plant

genome complexity and triggered the construction of high-quality

pan-genomes in plants with very large and complex genomes. A

comprehensive barely pan-genome was constructed using 20 vari-

eties of cultivated and wild barley accessions, and gene PAVs were

found to be frequently associated with resistance gene homologues

(Jayakodi et al., 2020). The prevalence of a large inversion was also

identified in current elite germplasm, which may have far-reaching

implications for the use of barley germplasm resources, under-

standing of the molecular mechanisms underlying the formation of

important agronomic traits, as well as for breeding high-quality, high-

yielding, and stress-tolerant superior varieties.

Vegetable species

Vegetable crops are major nutrient sources in the human diet and

have been cultivated for thousands of years. The pan-genomes of

many agronomically important vegetable crops, including tomato,

cucumber, eggplant, and rapeseed, have been released, which have

provided a basis for future biological studies and breeding programs

(Golicz et al., 2016b; Gao et al., 2019; Alonge et al., 2020; Song et al.,

2020; Li et al., 2022a).

Modern crops have narrow genetic diversity because of domes-

tication, so it is very important for breeders to obtain as much genetic

variation information as possible for crop improvement. The first to-

mato pan-genome was constructed based on the re-sequencing

data of 725 representative accessions using a map-to-pan strat-

egy, and gene PAV analyses detected substantial gene loss and

intense negative selection of genes related to disease resistance

during the domestication and improvement process (Gao et al.,

2019). They found that a rare allele in the TomLoxC promoter was

selected during domestication and further analysis showed that

TomLoxC played a key role in apocarotenoid production. Further-

more, long-read Oxford Nanopore sequencing captured 238,490 SVs

in 100 diverse tomato lines and hundreds of SV gene pairs were

found to exhibit subtle and significant changes in gene expression

that could broadly influence variations in quantitative traits, such as

fruit flavor, size, and production (Alonge et al., 2020). These findings

systematically highlighted the underexplored roles of SVs in
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genotype-to-phenotype relationships and their widespread impor-

tance and utility in tomato improvement.

Eight oilseed rape lines were sequenced using PacBio

sequencing technology and used to construct a pan-genome (Song

et al., 2020). Millions of small variants and 77.2 Mbe149.6 Mb gene

PAVs were identified and a genome-wide association study (GWAS)

of the gene PAVs was performed to screen candidate genes for

silique length, seed weight, and flowering time. This study not only

generated the first allotetraploid pan-genome and resources to

support a better understanding of the genome architecture and

accelerate the genetic improvement of rapeseed, but also demon-

strated that PAV-GWAS was significantly complementary to SNP-

GWAS in identifying associations of gene PAVs to traits. The first

cucumber pan-genome was constructed from the genome informa-

tion of 12 representative accessions using PacBio sequencing

technology and a graph-based assembly strategy (Li et al., 2022a).

Large segmental inversions were detected in some wild accessions

and the graph-based pan-genome was used in a GWAS analysis of

female flowering rate on a primary branch, fruit spine/wart density,

and branch number. This study clarified the cucumber karyotype

evolution in the domestication process and identified a number of

potentially important genes related to agronomic traits, which pro-

vided a basis for mining key genes, breeding, and improvement of

cucumber.

Other plant species

The large number of pan-genome studies of grain and vegetable

crops has enabled gene PAVs to be tracked in domestication and

breeding processes, and the potentially rich resources that were

obtained have been used to improve the genetic diversity that was

lost because of these processes. Pan-genomes of other species

such as fruits and species that are closely to crops have also been

constructed and analyzed to find agronomic traits that are affected

by SVs. The pan-genome of the model grass Brachypodium dis-

tachyon, which was constructed by de novo assembly of 54 inbred

lines, was found to contain nearly twice the number of genes found in

any individual genome. The core genes were enriched mainly in

essential cellular processes, whereas the shell and softcore genes

were enriched in functions that may be advantageous in specific

environments (Gordon et al., 2017). This study demonstrated that

gene PAVs contributed substantially to phenotypic variation and that

transposable elements played key roles in genome evolution, which

is consistent with results for other plant pan-genomes.

Cotton is an important economic crop that is cultivated world-

wide, and breeding plants with high-quality fiber that are high yielding

and disease resistant has long been a goal. The first cotton pan-

genome was constructed based on the re-sequencing data of 1961

cotton accessions using a map-to-pan strategy, and this variation

repertoire indicated that genomic divergence during cotton domes-

tication and improvement had informed the characterization of

favorable gene alleles for improved breeding practice (Li et al., 2021).

This cotton pan-genome contained the most abundant variations of

cotton so far and provided the genomic basis of cotton domestica-

tion and new ideas for the precise improvement of important cotton

traits. To characterize the genetic diversity in sunflower and to

quantify the contributions from wild relatives, 287 cultivated lines, 17

Native American landraces, and 189 wild accessions were used to

constructed a pan-genome of cultivated lines using a map-to-pan

strategy (Hübner et al., 2019). The results indicated that approxi-

mately 10% of the cultivated sunflower pan-genome was derived by

introgression of regions from wild sunflower species, and most of

these regions contained genes related to biotic resistance. Impor-

tantly, this study showed that the comparatively extensive wild ge-

netic resources made it possible to comprehensively analyze the
837
introgression regions in the pan-genome of cultivated sunflower and

their impacts on important agronomic traits.

Strawberry (Fragaria spp.) is a model system for fundamental and

applied research because it has remarkable nutritional composition,

different mating systems, and complicated ploidy variations

(Johnson et al., 2014; Qiao et al., 2021). The pan-genome of five

diploid Fragaria species was constructed and 128 individuals span-

ning 10 diploid species were resequenced. The subsequent analysis

showed the genetic diversity, demographic history, and natural se-

lection of strawberry species, and multiple independent single base

mutations were detected in the MYB10 gene that were associated

with white pigmented fruit. These findings provided new insights into

the evolution and resource utilization of strawberry, including the first

pan-genome, phylogeny and genetic differentiation, the evolutionary

dynamics of important gene families, and large-scale genome re-

sources for further research. The haplotype-resolved genomes of

cultivated apple and its two major wild progenitors (Malus sieversii

and M. sylvestris) were assembled and the pan-genome was con-

structed and analyzed by combining them with 91 varieties that had

been deeply resequenced. Thousands of new genes were discov-

ered and hundreds of themwere selected from one of the progenitors

and largely fixed in cultivated apples, showing that introgression of

new genes/alleles was a hallmark of apple domestication through

hybridization (Sun et al., 2020). The major breakthroughs in this study

were the high-quality genome assembly of highly heterozygous

species and the first haplotype-resolved apple pan-genome, which

indicated the potential of species domestication and improvement

based on haplotype-resolved pan-genomes.

The availability of multiple reference genome within a species has

provided unprecedented opportunities to identify SVs in a non-

reference-biased manner. Many crop species are characterized

with large and complex genomes, which make the genome assembly

cost-prohibitive. Currently, the pan-genome with numerous samples

were mostly constructed using “map-to-genome” method with short

reads, such as cotton (Li et al., 2021), chickpea (Varshney et al.,

2021), which enable the construction of the pan-genome with a

relatively lower sequencing depth and cost. However, the identifi-

cation of SVs has been troubled by the highly repetitive nature of crop

genomes as the short reads are inefficient and unreliable in these

regions (Della Coletta et al., 2021). The recently published pan-

genomes constructed from new approaches have the benefits of

providing the physical position of genes and other genomic features,

which provide the most comprehensive characterization of SV to

date (Alonge et al., 2020; Qin et al., 2021; Li et al., 2022a, 2022b),

although they were relatively costly.

Current plant pan-genome studies are mainly focused on the

knowledge of TEs and SVs (Morgante et al., 2007). The exhaustive-

ness of SV discovery is largely affected by the joint effect of sample

size and sequencing depth (Torkamaneh et al., 2021). As the sample

size increases, the percentage of the pan-genome increases and the

percentage of core genes decreases. A rice pan-genome con-

structed from three accessions revealed that about 92.17% of all

genes are core genes, and only 7.83% genes are dispensable genes.

A pan-genome constructed from 3010 diverse Asian cultivars

showed a higher percentage of variable genome (~41%) compared

with previous study based on three rice accessions (~8%), indicating

that the sample size will reach a saturation point where any further

increase would not lead to a further expansion of the pan-genome

size. Besides, the genetic properties of the selected sample, such

as genome size, mode of reproduction, bottlenecks during domes-

tications, and ploidy level, may also influence the efficiency and

completeness of a pan-genome study (Tao et al., 2019). The core

genes tend to have lower SNP density and/or indel density compared

with dispensable gene as observed in B. distachyon (Gordon et al.,

2017), rice (Wang et al., 2018), and soybean (Li et al., 2014), and
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they are functionally involved in basic cellular functions. The

dispensable genes tend to have higher SNP density, and are likely

involved in environment adaptability, organ size, flowering time, and

gene regulation (Gordon et al., 2017).
Applications of plant pan-genomics

Pan-genomes for functional gene mapping

Genomics has been widely used for gene mapping in crop spe-

cies; however, a single reference genome cannot fully represent the

germplasm within a species. A pan-genome is a comprehensive

representation of the genomic variation in a population or species

that enables the identification of genomic regions associated with

diverse traits of interest. The most common approaches used to

identify genetic variations associated with a desired phenotype are

QTL analysis and GWAS. QTL analysis can link phenotypes to mo-

lecular markers such as SNPs, simple sequence repeats, and re-

striction fragment length polymorphisms (Myles and Wayne, 2008),

whereas GWAS is used to detect associations between small genetic

variants and traits in a population. Both of these approaches are

influenced by reference bias (Gage et al., 2019). For example, the

Xa21 gene that confers resistance to Xanthomonas oryzae pv. oryzae

race 6 is absent in some cultivated rice accessions, which poses a

great challenge for cloning using a single reference genome (Song

et al., 1995). The availability of gene PAV information in a pan-

genome complemented with data on small SVs and SNPs can

overcome the problem of reference bias and facilitate marker

development during the mapping process, even for large-scale SVs

(Tao et al., 2019). GWASs of large SVs identified by pan-genome

analysis can not only map the regions and genes related to impor-

tant agronomic traits, but can also provide information about what

kind of SVs are associated with the different phenotypes.
Pan-genomes for domestication and evolution studies

Understanding the processes that facilitate the origin of pheno-

typic diversity in plants and the domestication of important crops has

long been a goal of researchers and breeders. Plant genomes are

highly dynamic and vastly divergent, so a phylogenomic framework is

needed to clarify the relationships between species or accessions.

Pan-genomes provide an unprecedented opportunity to investigate

the origin, evolution, domestication, and gene flow in plants by

obtaining the genetic variations among cultivated and wild acces-

sions (Qiao et al., 2021). Whole genomic comparisons between

cultivated and wild accessions or interspecies comparisons can

characterize the core and dispensable regions of genomes, which

provides valuable information for gene evolutionary studies

(Krasileva, 2019). Pan-genomes have been used to study the

evolutionary history of genes associated with important agronomic

traits in crop species, such as the identification of mutations and

evolution of MYB10 related to white fruit in wild strawberries (Qiao

et al., 2021). The seed coat color of soybeans is distinct in wild and

cultivated accessions; nearly all wild soybeans have black seed

coats and most cultivars have yellow seed coats (Zhou et al., 2015).

SVs in the genomic regions related to seed coat color were identified

based on the pan-genome that was constructed based on 29 diverse

accessions of cultivated and wild soybeans, and the origin and

evolution history of these variants were reconstructed by phyloge-

netic analysis and genetic distance estimation (Liu et al., 2020). Pan-

genome analysis of 33 genetically diverse rice accessions also

greatly promoted rice evolution and domestication studies. For

example, independent deletions in the OsWAK112d gene, a known

negative regulator of blast resistance, in some indica and japonica
838
genomes, suggested that these deletions may have increased rice

blast resistance in the affected plants (Qin et al., 2021).
Pan-genomes for genome evolution studies

The well-established plant pan-genomes have provided a deeper

understanding of the molecular mechanisms that underlie genome

evolution within a species, such as the origin of SVs and the impacts

of SVs on expression patterns and chromatin organization. Trans-

posable element activity, polyploidy, and outcrossing were shown to

be major driving forces for the generation of SVs (Panchy et al., 2016;

Dunning et al., 2019; Zhang et al., 2019). Pan-genomes can provide a

full view of the mechanisms of SV formation, which can help explain

genome evolution and the complex architecture of phenotypic traits

of agricultural relevance. In rice, tomato, and soybean, SVs have

been shown to influence the expression of nearby genes by changing

gene sequences or by affecting regulatory sequences (Alonge et al.,

2020; Liu et al., 2020; Qin et al., 2021). Plant pan-genomes have also

been used to explore the influence of SVs on chromatin three-

dimensional organization. In both diploid and tetraploid cottons,

many SVs were found in topologically associating domain boundary

regions and had a large effect on disrupting TAD organization, and

the SVs together with TAD disruption led to expression differences of

orthologous genes (Long et al., 2021).

Polyploidy is common in angiosperm plants and proved to be

tremendous source of raw material for gene genesis (Jaillon et al.,

2007; Huang et al., 2013; Salman-Minkov et al., 2016). A soybean

pan-genome showed that the nucleotide diversity in the WGD re-

gions was significantly lower than that in the non-WGD regions.

Compared with non-WGD regions, the WGD regions contained a

more core and softcore genes and less SVs, indicating that genome

duplication may be an important genetic force to shape the evolution

of SVs (Liu et al., 2020). A significant higher ratio of core genes

(average ~45.27%) were generated from a WGD in the sesame pan-

genome, and only ~10.22% dispensable genes are influenced by

WGD event (Yu et al., 2019).
Pan-genomes for genotype database construction

A comprehensive functional genomic platform that integrates

the variants obtained by pan-genome analysis, the diverse phe-

notypes among different accessions, and other multi-omics data

will provide hugely valuable resources for genetic studies and crop

breeding. Genotype databases have been used to search and

visualize variation types of interest in the pan-genome context.

Several databases that contain large amounts of genetic and

phenotypic information have been constructed to facilitate ready

access to pan-genome resources in many important crops. The

Molecular Breeding Knowledgebase of rice contains two reference

genomes and other multi-omics data, including nearly 7000 global

rice resequencing data sets, more than 4 million phenotypes, and

13,000 functional annotations of known genes, which has allowed

complex functions such as germplasm screening based on geno-

type, individual comparisons, mutation analysis, and online anno-

tation of genotypes to be conducted (Peng et al., 2020). ZEAMAP, a

comprehensive database of maize genera, contains integrated

multi-omics data, including transcriptomes, phenotypic groups,

and genetic variations, which has greatly promoted the under-

standing of the relationship between phenotypes and genotypes in

maize (Gui et al., 2020). A comprehensive functional genomic

platform for 1689 rapeseed accessions that contains genome se-

quences, phylogenetic relationships, gene PAV information, and

common multi-omics tools was established to integrate quick

searches and visualization of the pan-genome data (Song et al.,
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2021). This platform has provided resources that form a solid

foundation for genetic breeding and improvement of rapeseed.

Pan-genomes for molecular breeding in crops

Natural and occasional variants can be identified by analyzing

high-quality pan-genomes, and many variants associated with

important agronomic traits, such as abiotic and biotic stress resis-

tance, flower time, fruit flavor, and production, have been detected

(Yu et al., 2014; Golicz et al., 2016b; Gao et al., 2019; Tao et al.,

2019). Many crop species have lost substantial genetic diversity

through successive bottlenecks during domestication and selection
Fig. 3. The workflow for curre

839
(Li et al., 2014; Gao et al., 2019; Alonge et al., 2020). Pan-genomes

enable comparisons between crop species and their wild relatives,

which can help to identify genes that have been lost under intensive

human cultivation. Enhanced understanding of the dispensable

genome is of great importance to select suitable materials for a

breeding crops (Tao et al., 2019). The CRISPR-Cas9 technology has

been widely used in transformable plants to characterize gene

function and improve traits; however, the editing efficiency was

influenced by the genotype and target site selected (Yu et al., 2017).

The availability of high-quality pan-genomes, along with phenotypic

information, can help to identify variant alleles and delimit CRISPR-

Cas9 target sites, which can improve the editing efficiency (Tay
nt pan-genome studies.
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Fernandez et al., 2022). Hence, pan-genome analysis focused mainly

on crop diversity and improvement will facilitate crop breeding

programs.

Exploring the genetic basis that underlies agronomical traits is

critical for crop improvement and genomics-based breeding

methods have been applied successfully to many crop species.

Access to important genetic resources by pan-genome research and

their correlation with phenotypes are crucial for crop improvement. A

genome design approach, which applied genome analyses to the

creation of F1 hybrids, was used to develop pure and fertile potato

lines (Zhang et al., 2021a). Self-compatible diploid clones with low

heterozygosity and few deleterious mutations were selected as the

starting materials. Segregation distortion regions and important ge-

netic loci were identified by population genetics analysis, and then

highly homozygous inbred lines were developed by continuous

selfing and genome-assisted selection. Finally, the genomes of the

inbred lines were sequenced, and those with high genome comple-

mentarity were crossed and the resultant F1 hybrids were evaluated

for performance. The de novo domestication of wild allotetraploid

rice also provided new insights into the design of ideal crop species

by establishing an efficient transformation and genome editing sys-

tem based on a high-quality reference genome (Yu et al., 2021).

Plant pan-genome analysis tools

Here, we briefly summarize the available tools and pipelines

used for pan-genome analyses, including the selection of repre-

sentative accessions, genome assembly, genome annotation, SNP

identification, orthologous group identification, phylogenetic
Table 1

Overview of key tools and pipelines used for pan-genome analyses.

Application

Selection of representative accessions Short-read mapping

Reads filtering

Variant discovery

Phylogenetic tree construction

High-quality genome assembly Contigs construction

Analyzing kilobase resolution Hi-

C data

Chromosome construction

Genome annotation Screening interspersed repeats

Gene prediction

Functional annotation

Identification of core and variable genes Genes clustering

Construction of graph-based pan-genomes Graph-based pan-genome

construction

Structural variation genotyping Structural variation genotyping

for linear genome

Structural variation genotyping

for graph-based pan-genomes

Genome wide association studies

Homology searches

Mapping and quantification of RNA-seq data
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construction, SV detection, construction of a pan-genome, and

GWAS mapping using the pan-genome (Fig. 3; Table 1).

Selection of representative accessions

The first step for setting up a pan-genome is the selection of

diverse individuals. Adequate and representative accessions that

capture the genetic diversity within a species should be selected. The

most important factors to consider are phenotypic diversity and

phylogenetic relationship. Construction of a phylogenetic tree of the

samples based on the identified SNPs can facilitate the selection

process. The used software packages are summarized in Table 1.

High-quality genome assembly

Genome assembly is conducted to decipher the base composi-

tion that is fundamental for pan-genome analysis. Assembly methods

for long-read sequences from PacBio platforms and complementary

approaches for chromosome construction are listed here. Canu and

Hifiasm can both be used to assemble HiFi data. The quality at the

single-base level and completeness, including heterozygous regions,

of genomes constructed by Canu are always much higher than those

for genomes constructed by Hifiasm. However, the continuity of a

Canu assembly is usually much smaller than that of a Hifiasm as-

sembly, especially for highly heterozygous species, and the amount

of computation required for Canu is muchmore than the computation

required for Hifiasm. Besides, Hifiasm assemblies can sometimes

lose large fragments and contain the chimeras of heterozygous se-

quences. The used software packages are summarized in Table 1.
Software Link

BWA https://github.com/lh3/bwa

SAMTools https://github.com/Blue-Matter/SAMtool

Genome Analysis Toolkit https://github.com/broadinstitute/gatk

FastTree https://github.com/PavelTorgashov/FastTree

CANU https://github.com/marbl/canu

Hifiasm https://github.com/chhylp123/hifiasm

Juicer https://github.com/aidenlab/juicer

3DDNA https://github.com/aidenlab/3d-dna

RepeatMasker https://github.com/rmhubley/RepeatMasker

BRAKER https://github.com/Gaius-Augustus/BRAKER

MAKER2 https://www.yandell-lab.org/software/maker.html

InterProScan https://github.com/biocorecrg/interproscan_docker

OrthoMCL https://github.com/stajichlab/OrthoMCL

OrthoFinder https://github.com/davidemms/OrthoFinder

Variation graph (vg) toolkit https://github.com/vgteam/vg

Minigraph toolkit https://github.com/lh3/minigraph

PanGenie https://github.com/eblerjana/pangenie

SyRI https://schneebergerlab.github.io/syri/pipeline.html

SVMU https://github.com/mahulchak/svmu

NGMLR https://github.com/philres/ngmlr

Sniffles https://github.com/fritzsedlazeck/Sniffles

Variation graph (vg) toolkit https://github.com/vgteam/vg

Minigraph toolkit https://github.com/lh3/minigraph

GraphTyper2 https://github.com/DecodeGenetics/graphtyper

Plink https://www.cog-genomics.org/plink/

GEMMA https://github.com/genetics-statistics/GEMMA

EMMAX http://genetics.cs.ucla.edu/emmax/

PLAST https://mesihk.github.io/plast

PathRacer http://cab.spbu.ru/software/pathracer/

Variation graph toolkit https://github.com/vgteam/vg

RPVG https://github.com/jonassibbesen/rpvg

https://github.com/lh3/bwa
https://github.com/Blue-Matter/SAMtool
https://github.com/broadinstitute/gatk
https://github.com/PavelTorgashov/FastTree
https://github.com/marbl/canu
https://github.com/chhylp123/hifiasm
https://github.com/aidenlab/juicer
https://github.com/aidenlab/3d-dna
https://github.com/rmhubley/RepeatMasker
https://github.com/Gaius-Augustus/BRAKER
https://www.yandell-lab.org/software/maker.html
https://github.com/biocorecrg/interproscan_docker
https://github.com/stajichlab/OrthoMCL
https://github.com/davidemms/OrthoFinder
https://github.com/vgteam/vg
https://github.com/lh3/minigraph
https://github.com/eblerjana/pangenie
https://schneebergerlab.github.io/syri/pipeline.html
https://github.com/mahulchak/svmu
https://github.com/philres/ngmlr
https://github.com/fritzsedlazeck/Sniffles
https://github.com/vgteam/vg
https://github.com/lh3/minigraph
https://github.com/DecodeGenetics/graphtyper
https://www.cog-genomics.org/plink/
https://github.com/genetics-statistics/GEMMA
http://genetics.cs.ucla.edu/emmax/
https://mesihk.github.io/plast
http://cab.spbu.ru/software/pathracer/
https://github.com/vgteam/vg
https://github.com/jonassibbesen/rpvg
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Genome annotation

Genome annotation methods are used to predict gene functions

and structures. The software or pipeline for pan-genome annotation

is still not available. The current strategy for pan-genome annota-

tion is to perform independent annotation of individual genomes.

The automatic annotation pipelines such as Maker2 (https://www.

yandell-lab.org/software/maker.html) and Braker2 (https://github.

com/Gaius-Augustus/BRAKER) are generally effective at detect-

ing protein-coding regions. The BRAKER2 pipeline generates and

integrates spliced alignments of homologous proteins, which are

then used for the training and gene prediction by GeneMark-EPþ
(https://github.com/gatech-genemark/GeneMark-EP-plus) and

AUGUSTUS (https://bioinf.uni-greifswald.de/augustus/). MAKER

identifies repeats, aligns ESTs and proteins to the reference

genome, performs de novo gene predictions and automatically

integrate the results into consensus gene set. Besides, users need

to run MAKER for multiple rounds to improve annotation. The used

software packages for genome annotations are summarized in

Table 1.

Identification of core and variable genes

Core and variable genes can be identified by clustering the genes

from the genomes of different samples. OrthoMCL (https://github.

com/stajichlab/OrthoMCL) mainly looks for lineal homologous

genes between relatively complete genomes, and firstly it creates

databases and builds tables. Blast is used to perform all-vs-all

comparison of the protein sequences, and MCL is used to cluster

gene pairs into in-paralog groups and co-ortholog groups based on

sequence similarity. Unlike OrthoMCL, OrthoFinder (https://github.

com/davidemms/OrthoFinder) can use DIAMOND software (https://

github.com/bbuchfink/diamond) to perform all-vs-all sequence

alignment, which greatly improve the blast speed, and offers an

option for fast tree building.

Construction of graph-based pan-genomes

Graph-based genomes have been used effectively to integrate

genetic variations within a species. Several tools, including the

variation graph toolkit (Garrison et al., 2018), minigraph toolkit (Li

et al., 2020), Seven Bridges GRAF pipeline (Patron et al., 2019),

and PanGenie (Ebler et al., 2020), have been developed for graph-

based pan-genome construction. The variation graph toolkit pro-

vides data storage, interchange formats, alignment, genotyping, and

variant calling methods and is the most widely used software for pan-

genome construction with relatively integrated functions. VG uses

paths to project graphics-related data into a reference-related co-

ordinate space. Paths provide stable coordinates for graphs that are

constructed in different ways from the same input sequence. The

minigraph toolkit uses the reference Graphical Fragment Assembly

format to model reference pan-genome graphs, which made the

visualization and application of graph-based pan-genomes much

more convenient than they are using the variation graph toolkit.

Minigraph aligns the query sequence with the sequence graph and

increases the existing graph with long query subsequences that

diverge from the graph. For a graph consists of many short seg-

ments, minigraph will fail to map query sequences, and the alignment

is slow for highly diverse species. Mapping readings to the reference

genome will introduce reference bias and computational burden. The

PanGenie short-read genotyper algorithm can efficiently leverage

the increasing numbers of haplotype-resolved assemblies to

unravel the functional impact of previously inaccessible variants and

is faster than the variation graph and minigraph toolkits. The used

software packages are summarized in Table 1.
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Structural variation genotyping for linear and graph-based

pan-genomes

The variety of repetitive sequences in genomes make it techni-

cally challenging and time-consuming to generate an accurate SVs

set for pan-genome construction. Several methods have been

developed to resolve this problem. SyRI (Synteny and Rearrange-

ment Identifier) and SVMU (SVs from MUMmer) were designed to

identify SVs based on comparisons between assembled genomes.

SVMU can detect PAV and CNV using lastZ or MUMmer results as

input files, but it has not been extensively tested on large genomes.

SyRI mainly detects chromosomal variation based on MUMmer re-

sults, and it starts by identifying the longest collinear regions. It can

identify all collinear regions and local variations within rearrangement

regions, including SNP, INDEL, PAV, INV, TRANS, and so on. After

many attempts and comparisons, we found that SyRI identified many

more types of SVs than SVMU, and although smaller numbers of SVs

were identified by SVMU, its accuracy was slightly higher than that of

SyRI. The NGMLR long-read mapper and Sniffles caller were

designed to identify SVs in long-read sequencing data, which may

lose some genetic variations, especially for large SVs. The used

software packages are summarized in Table 1.

Genome-wide association studies

The SVs detected in a graph-based pan-genome can be analyzed

with standard linear genome tools, including Plink (Purcell et al.,

2007), EMMAX (Kang et al., 2010), and GEMMA (Parker et al.,

2016). Plink association analysis is mainly aimed at case/control

analysis, including standard chi-square test, logistic regression,

simple linear regression, Fisher’s test and so on. Complex models

cannot be realized, so animal and plant data can be filtered by this

software, but association analysis is not recommended. It is generally

used for human association analysis (Chang et al., 2015). EMMAX

mainly implements EMMA model and genotype files are usually in

tped/tfam format, and it is worth noticing all chromosome names are

changed to numerical type. EMMAX can only run one trait at a time,

which consumes less memory (Kang et al., 2010). GEMMA needs

four main input files, including genotype data, phenotype data, cor-

relation matrix, and covariate data, which incorporated LM, MLM,

MLMM, and BSLMM models. The implemented multivariate linear-

mixed model offers improved computation speed and power, which

can deal with more than two phenotypes. A unique Bayesian sparse

linear mixing model is also used for prediction, multi-marker

modeling and phenotypic prediction (Zhou and Stephens, 2014).

The used software packages are summarized in Table 1.

Homology searches

Algorithms for sequence to linear alignment have been available

for a long time, such as BLAST, BLAT (Kent, 2002), and HMMER (Finn

et al., 2011). PLAST (Schulz et al., 2021) and PathRacer (Shlemov and

Korobeynikov, 2019) were designed to perform homology searches

with graph-based pan-genomes. PLAST performs a local alignment

search between a DNA query sequence and a graph-based pan-

genome. A new heuristic method is used to find maximum scoring

local alignments, which use the assembled genomes or reads as

input. This method scales sublinearly in running time and memory

usage with respect to the number of genomes used. PathRacer

aligns a profile hidden Markov model (HMM) directly to the assembly

graph. The most probable paths traversed through the whole as-

sembly graph are inferred by this tool, it does not matter whether

interested sequence is located within the single contig or scattered

across several edges. The used software packages are summarized

in Table 1.

https://www.yandell-lab.org/software/maker.html
https://www.yandell-lab.org/software/maker.html
https://github.com/Gaius-Augustus/BRAKER
https://github.com/Gaius-Augustus/BRAKER
https://github.com/gatech-genemark/GeneMark-EP-plus
https://bioinf.uni-greifswald.de/augustus/
https://github.com/stajichlab/OrthoMCL
https://github.com/stajichlab/OrthoMCL
https://github.com/davidemms/OrthoFinder
https://github.com/davidemms/OrthoFinder
https://github.com/bbuchfink/diamond
https://github.com/bbuchfink/diamond
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Mapping and quantification of RNA sequencing (RNA-seq)

data

A graph-based pan-genome can improve the accuracy of RNA-

seq analysis and can represent splice junctions with little modifica-

tion (Sibbesen et al., 2021). The vg rna tool and vg mpmap are used

to perform spliced graph construction and RNA-seq mapping,

respectively. And then RPVG is used to quantify the haplotype-

specific transcript expression. The software packages for RNA-seq

mapping and quantification are summarized in Table 1.

Challenges, prospects, and future directions

Challenges for the construction and application of plant pan-

genomes

Along with the development of new sequencing technologies, the

construction of plant pan-genomes is becoming increasingly

attractive. However, many challenges remain to be addressed for the

construction and application of plant pan-genomes. Until now, most

plant pan-genomes have been built using a “map-to-genome”

method with short reads. However, newly obtained sequences

cannot be mapped to specific positions in the pan-genome, which

greatly hinders the downstream analysis and application in breeding

programs, such as gene positional cloning, and massive individual

genetic information from the non-reference lines is missed, particu-

larly for larger SVs (Liu and Tian, 2020). The large number of repeats

in plant genomes, such as transposable elements, which are major

drivers that influence genome evolution and crop phenotypes, are

the main reason why plant genomes have historically been poorly

assembled, resulting in highly fragmented and incomplete pan-

genomes (Alonge et al., 2020; Liu et al., 2020). Long-read

sequencing technologies have made high-quality reference

genome assembly practicable and a number of high-quality plant

pan-genomes have been published, including those for rice, soy-

bean, rapeseed, tomato, and wheat; however, it is still costly to

construct a pan-genome with hundreds of samples. Computational

time is another major challenge for pan-genome construction. Pan-

genomic data can be considered “Big Data” in volume, variety, ve-

locity, and veracity, and finding a way to store datasets from dozens

of samples, especially for species such as wheat with large genomes,

is essential (Consortium, 2018). Until now, now pan-genome studies

have focused mainly on important agronomic crops and efforts are

still needed to include the understudied plant species.

The dispensable genome, mainly driven by SVs, is the key

element that contributes the phenotypic variations between ac-

cessions (Xu et al., 2012; Mace et al., 2013; Tao et al., 2019).

However, current pan-genome analyses have focused mainly on

the identification of SVs and gene PAVs, and have largely ignored

comprehensive functional methods that cannot be fully imple-

mented by analyzing population re-sequencing data because of the

incomplete genetic information, particularly for the large SVs (Gao

et al., 2019; Qin et al., 2021; Li et al., 2022a). Currently, pan-

genomes contain only basic information, such as the allele fre-

quencies, newly discovered genes, and SVs. In a previous analysis

of RNA-seq data for 29 diverse rice sample types from the R527

accession, including multiple tissues at different stages as well as

tissues for plants grown under different abiotic stress conditions,

we found that the SVs had broadly shaped gene expression profiles

(Qin et al., 2021). However, whether these SVs affect the local three-

dimensional chromatin conformation and epigenetic modifications,

and how these SVs regulate gene expression have still not been

systematically studied and remain largely unresolved. Therefore,

more omics and phenotypic data are needed to explore the po-

tential mechanisms and regular patterns of SVs.
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Currently, the tools for pan-genome analysis still lag far behind the

developments in sequencing technology. The number of samples

used in pan-genomic studies, sequencing depth, strategies for

constructing pan-genomes, sequence annotation methods, and

definition of core and dispensable genes vary greatly (Li et al., 2014;

Yu et al., 2019; Liu and Tian, 2020; Qin et al., 2021). Graph-based

pan-genomes can store all types of genetic variations (Paten et al.,

2017), but how to effectively integrate, visualize, and use the pan-

genome data remains challenging. Previous studies have tried to

address these problems (Garrison et al., 2018; Li et al., 2020;

Rabbani et al., 2020), but there is still no standard format for storing

pan-genome graphs. Furthermore, the lack of algorithms and

methods for downstream analysis, including the annotation of a

variable genome and multi-omics analysis, has become a serious

obstacle for the development of plant pan-genome studies. There is

clearly a need to develop tools for storage and downstream analysis,

not only to realize the effective integration of huge amounts of genetic

information but also to realize the efficient use of the information, so

as to really provide a useful pan-genome.

Prospects and future directions for plant pan-genomes

The availability of pan-genomes offers substantial new knowledge

and unprecedented resources for unlocking the full genetic potential

of plant species. The immense advances in sequencing and com-

puter technologies, such as multi-omics, artificial intelligence, and

gene editing, have made feasible the integration and downstream

application of the extensive variants within species (Fig. 4). Phe-

nomics technologies, which are characterized by intelligence, and

high-throughput and dynamic nondestructive measurement, have

developed rapidly thanks to developments in remote sensing, ro-

botics, imaging technologies, and artificial intelligence that have

made it possible to detect multi-temporal and multi-scale pheno-

types, thereby enabling the dynamic and accurate identification of

phenotypes in the whole growth period of crops (Furbank and Tester,

2011; McCoy, 2011; Fiorani and Schurr, 2013). The phenotypes of

368 maize materials were tested continuously at multiple growth

stages under normal watering and drought stress, and combined

with GWAS analysis, a large number of candidate genes and QTLs

related to drought stress were identified and a genotype-to-

phenotype association network was constructed (Wu et al., 2021).

Therefore, combining high-throughput phenotyping data and the

variants detected in pan-genome studies is a novel and effective

approach to dissect the genetic architecture of complex traits and

clone genes associated with agronomic traits.

Multi-omics data generated from dozens of samples, including

pan-genome, phenome, transcriptome, epigenetic modification,

metabolome, and proteome data, even spatial and single-cell tran-

scriptome data, enable a deeper understanding of how SVs in a pan-

genome influence the complex architecture of diverse traits of agri-

cultural relevance. Analyses of multi-omics data can provide infor-

mation about the dynamics of genomic variants, gene expression

and regulation, as well as substance synthesis and metabolism that

can be used to study complex biological processes and regulatory

networks holistically and systematically. For example, the metab-

olome is the complete set of metabolites in a cell, tissue, or organism,

which is complementary to phenomics and has been widely used in

plant species such as tomato, rice and wheat (Chen et al., 2016,

2020; Zhu et al., 2018). Untargeted metabolomic analyses were

performed in 136 representative tea accessions from China, and

different phylogenetic subgroups were found to contain different

signature metabolites. In particular, the accessions of Camellia

sinensis var. assamica were characterized by high accumulation of

diverse classes of flavonoid compounds, which may influence the

flavors of these accessions (Yu et al., 2020).
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Fig. 4. Prospects and future directions for plant pan-genomics. The advances of multi-omics data, along with the high-throughput phenotyping data and artificial intelligence together,

make it possible to perform precise genome prediction. It becomes possible for accurate prediction of genotype, expression status, phenotype, etc. By taking advantage of the well-

established pan-genome and gene editing, we will be able to achieve the goal of genome design in crop species.
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The immense technological advances, including gene editing and

artificial intelligence, have made feasible the application of genetic

resources in crop breeding. The variants identified from pan-

genomes can support genome editing approaches that provide

functional information on gene sequences and new target sites with

increased efficiency (Tay Fernandez et al., 2022). The wheat sus-

ceptibility gene MLO was precisely manipulated using gene editing

techniques, and the new germplasm showed broad spectrum

resistance to powdery mildew, and had high yield and good quality.

This finding showed that complex plant genomes can be edited and

opened the prospect of genome editing in modern agricultural pro-

duction (Li et al., 2022b). Artificial intelligence has also been widely

applied in multi-omics research and a number of breakthroughs have

been made. For example, AlphaFold2 is a novel machine learning

approach that incorporates physical and biological knowledge about

protein structure based on neural network-based model (Jumper

et al., 2021).

Genomic prediction methods that use phenotypic data and the

increasingly available genotypic data as the training set to construct

a statistical model for predicting phenotypes can be applied to

accelerate molecular plant breeding (Meuwissen et al., 2001; Wong

and Bernardo, 2008; Hu et al., 2019; Keller et al., 2020). The

composition and size of the training sets are critical for the accuracy

of the predictions, and adequate amounts of different data from in-

dividuals are necessary (Isidro et al., 2015; Hu et al., 2019). Pan-

genome and multi-omics data together with gene editing and artifi-

cial intelligence make precise genome prediction possible. Hybrid

breeding is an efficient way to increase production in crop breeding,

and genomic prediction methods have been shown to have

competitive advantages because of their ability to predict and

selecting superior hybrid descendants based on the genotypes of

inbred parents (Xu et al., 2014). The successful development of a

genomic prediction model will greatly improve the accuracy of

breeding value prediction and dramatically reduce generation in-

tervals (Desta and Ortiz, 2014). The intermediate data generated by

the advanced high-throughput multi-omics platforms act as bridges

between genotypes from pan-genomes and phenotypes from phe-

nomics technologies (Hu et al., 2019). Artificial intelligence methods,

including machine learning and deep learning, can be used to

construct a genomic prediction model by integrating multi-

dimensional phenotypic datasets and multi-omics data. An innova-

tive genomic prediction framework will make it possible to accurately

predict genotypes, expression status, phenotypes, and gene modi-

fication and regulation, as well as help to identify key functional

genes. Once key functional genes are identified in plant species,

gene editing technologies can be used to enhance target traits such

as yield, quality, tolerance to biotic and abiotic stresses, and nutri-

tional value, which will greatly accelerate the molecular breeding of

various plants. The effective integration of the information generated

by pan-genome analyses will not only improve the prediction accu-

racy of functional genes related to important agronomic traits, but

also help in the construction of genotype-to-phenotype association

networks. By taking advantage of the well-established pan-ge-

nomes, a series of agronomically important genes could be edited,

which will help achieve the goal of genome design in crop species.
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