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What we previously discussed:

Evolution of SLAM
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SLAM:: The online and real-time version

Difference between Structure from Motion and SLAM
Why not to use such approaches in robotics applications?

 We cannot wait for all the frames to be captured

 Even then, we cannot expect to process all these frames in real-time
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SLAM:: If we were to split the two functionalities

Localization Mapping
Estimate the robot’s pose given landmarks Estimate the landmarks given the robot’s poses
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Modeling SLAM

Given
 The robot’s controls

uyr = {ug, Uy, ug, ., Ur}
 Observations

217 = 121,22, 23, .., 27}

Wanted
* Map of the environment
m

e Path of the robot
Xo:T = {Xo, X1y X2 wen)s xT}
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Modeling SLAM

Modeling this problem probabilistically

 Thereis uncertainty in the measured robot’s motion and observations
* We can use probability theory to represent this uncertainty

p(x)

“The robot is here”

X

“The robot is somewhere here

with this level of certainty”
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Modeling SLAM

Modeling this problem probabilistically

Given Observations

Distribution \ /

\ p(XO:Trm | Z1.T) ul:T)

[N N

Path Map Control commands
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Modeling SLAM

What do these probabilities actually mean?
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Modeling SLAM: State Estimation

Estimate the state x of a system given observations z and controls u.

p(x|zu)

e Stateis defined by us and can contain any combination of the robot’s pose and the map
 As we propagate in time, this distribution will become better and better

* Finally, the expected value (mean) will give us our best estimate for the state
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Modeling SLAM: State Estimation

Estimate the state x of a system given observations z and controls u.

p(x¢|z1.e, Ui.e)

e Stateis defined by us and can contain any combination of the robot’s pose and the map
 As we propagate in time, this distribution will become better and better

* Finally, the expected value (mean) will give us our best estimate for the state
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SLAM: Recursive Bayes Filter

The basis of on-line SLAM
e We need to build a recursive formula:

fxi) = g(f(xi—i))

Examples
¢ fO=flx-D+1
Xiy1 = 3x; + 2
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SLAM: Recursive Bayes Filter

The door sensing robot example

1 bel(x)
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SLAM: Recursive Bayes Filter

p(z|x)
$ bel(x)
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SLAM: Recursive Bayes Filter

! bel(x)
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SLAM: Recursive Bayes Filter

p(z|x)

4 bel(x)
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SLAM: Recursive Bayes Filter

b pel(x)
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SLAM: Recursive Bayes Filter

bel(x;) = p(x; |z1.1,uq.;)  // Belief definition
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SLAM: Recursive Bayes Filter

bel(x:) = p(x¢ |z1.¢, Uq.t)

=N p(Z¢|xe, Z1:0-1, W) D(X¢ | Z1:0-1,U1¢) // Bayes’ rule
1: normalization constant

P(B|A)P(A)

P(A|B) = P(B)
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SLAM: Recursive Bayes Filter

bel(xt) — p(xt |Zl:t! ul:t)
=npZelxe, Z1.0—1, Ure) DX | Z1261, Ugt)

=np(z¢|x;) p(x¢ | 21.0—1,U1.¢) // Markov assumption
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SLAM: Recursive Bayes Filter

bel(x:) = p(x¢ |z1.¢, Uq.t)

=1 p(z
=np(z

=np(z

X, Z1.t—1, Ur:t) P(Xe | Z1.6—1, Up.t)

xe) P(xe | Z1.p-1,Upt)

xt)J p(x¢ [Xt—1, Z1:0-1, Ua:e) D(Xp—1 |Z1:6-1, Ure) dXe—1 /[ Law of total probability

Xt—1
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SLAM: Recursive Bayes Filter

bel(x:) = p(x¢ |z1.¢, Uq.t)

=1 p(z
=np(z

=np(z

X, Z1.t—1, Ur:t) P(Xe | Z1.6—1, Up.t)

xe) P(xe | Z1.p-1,Upt)

xt)J p(x¢ [Xt—1, Z1:0-1, Ua:e) D(Xp—1 |Z1:6-1, Ure) dXe—1 /[ Law of total probability

Xt—1

Law of total probability:

P(A) = j P(AIB) P(B) dB
B
For the discrete case, it may be more

intuitive:

P(A) = ZP(AIB) P(B)
B
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SLAM: Recursive Bayes Filter

bel(xt) — p(xt |Zl:tr ul:t)
=npZelxe, Z1.0—1, Ure) DX | Z1261, Ugt)

=npzlxe) p(xe | 1.1, Uqt)

[
=np(z xt)J (e |xp—1, 2001, Up.e) D(Xpq |Z1.6— 1, Uge) dXpq
Xt—1

[ .
=1 P(Zt|xt)J p(xg |xp—1,up) D(Xp—1 |Z1.¢-1, U1.¢) dxe—1 // Markov assumption
Xt—1
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SLAM: Recursive Bayes Filter

bel(xt) — p(xt |Zl:tr ul:t)
=npZelxe, Z1.0—1, Ure) DX | Z1261, Ugt)

=npzlxe) p(xe | 1.1, Uqt)

[
=np(z xt)J (e |xp—1, 2001, Up.e) D(Xpq |Z1.6— 1, Uge) dXpq
Xt—1

[
=1 P(Zt|xt)J pCxe [xe—q,ue) D(e—q 121621, Use) dXeg

[ .
=1 p(ztlxt)J p(xe |1, ue) p(Xe—1 121.4—1,U1.t—1) dxs—1 // Independence assumption
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SLAM: Recursive Bayes Filter

bel(xt) — p(xt |Zl:tr ul:t)
=npZelxe, Z1.0—1, Ure) DX | Z1261, Ugt)

=npzlxe) p(xe | 1.1, Uqt)

[
=np(z xt)J (e |xp—1, 2001, Up.e) D(Xpq |Z1.6— 1, Uge) dXpq
Xt—1

[
=1 P(Zt|xt)J pCxe [xe—q,ue) D(e—q 121621, Use) dXeg

[
=1 p(Ztlxt)J pQxe |xe—1,ue) P(Xpq 12161, Ugp—1) AXp—q

=np(z¢|x.) JF p(x; |xe—q,us) bel(x;._1) dx,_y // Recursive term
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SLAM: Recursive Bayes Filter

bel(x:) = p(x¢ |21, Uq.t)
=np(Z¢lxe, Z1.6-1, U1.t) DXt | Z1.¢-1,U1.¢) // Bayes’ rule

=np(z¢|x;) p(x¢ | 21.0—1,U1.¢) // Markov assumption

[ .
=1 p(z xt)J p(x¢ [Xt—1, Z1:0-1, Ua:e) D(Xp—1 |Z1:6-1, Ure) dXe—1 /[ Law of total probability
Xt—1

[ .
=1 p(ztlxt)J Py |xp—1,ue) P(Xe—1 121,421, Uq.¢) dxs—1 // Markov assumption

[ .
=1 p(ztlxt)J p(xe |1, ue) p(Xe—1 121.4—1,U1.t—1) dxs—1 // Independence assumption

=np(z¢|x.) JF p(x; |xe—q,us) bel(x;._1) dx,_y // Recursive term
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SLAM: Recursive Bayes Filter

We typically split the process into a Prediction and a Correction Step
* Prediction Step

bel(x,) = j p(x; |xe—1,up) bel(xe_q) dxy_4

Xt—1 ]
Motion model

* Correction Step

bel(x¢) = np(z |x¢) m(xt)

Observation
model (Also: measurement or sensor model)
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4 Motion Model

p(xy |xp—1, up)

4 Observation Model

p(z; |x¢)

# New belief generation

bel(x;)
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SLAM: Recursive Bayes Filter

Motion model: specifies a posterior probability that the
control command u; carries the robot from x;_;to x;

p(xt |xt—1»ut)
Instead of control commands, u; can come from a proprioceptive sensor

 Odometry-based
* E.g., wheel encoders

* Velocity-based
e E.g., IMU
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SLAM: Recursive Bayes Filter

Motion model: Standard odometry model

* We define poses in the 2D world as (x, y, 8)

*  The movement from (X, ¥, 0) to (x',¥’,8") can be
expressed as: U = (0rot1, Otrans Orot2)

Otrans = \/(f’ —X)% + (3_” - 3_’)2

Orot1 = atan2(37’ — )_/,f' —X) — 6 Orot2 = 6" — 6 — Orot1
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SLAM: Recursive Bayes Filter

Motion model: Standard odometry model
Probability distribution for p(x; [x;—1, us)

e Gaussian Model

O—(C

e Non-Gaussian Model
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SLAM: Recursive Bayes Filter

Motion model: Standard velocity model

* We define poses in the 2D world as (x, y, 8)

(fl' }—]I, 9‘/)

*  The movement from (X, ¥, 0) to (x',¥’,8") can be
expressed as: u = (v, w)

v v ;
71 [x] — Zsm 0 + Zsm(ﬁ + wAt) | |
7= 7| +| v T _ We have an issue here!
_ _ —c0s 0 — —cos(6 + wAt)
'] |6 w w
wAt
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SLAM: Recursive Bayes Filter

Motion model: Standard velocity model

 The previous model forces the robot to execute a curve
* What if we need the robot to face on a different direction

Odometry model: 3DoF — Velocity model: 2DoF
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SLAM: Recursive Bayes Filter

Motion model: Standard velocity model

* We define poses in the 2D world as (x, y, 8)

(fl' }—]I, 9‘/)

*  The movement from (X, ¥, 0) to (x',¥’,8") can be
expressed as: u = (v, w,y)

_ _ _ _ [ v . ~ v . ~ i
7' 7 —,sin 6 + Zsm(@ + wAt)
v' | = | ¥ v N _

Y Y| =cosd — —cos(0 + wAt)
o' 0 w w

- wAt +y
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SLAM: Recursive Bayes Filter

Motion model: Standard velocity model
Probability distribution for p(x; [x;—1, us)

e Gaussian Model @

e Non-Gaussian Model
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SLAM: Recursive Bayes Filter

Sensor model: Specifies a posterior probability that the current state x;
(robot+map) affects the observation z;

p(z¢ |x¢)

Heavily depends on the sensors; Let’s assume a Laser Scanner
* Each observation z; consists of K measurements

ze = {2z, ..., z¥}

* Assumption: Individual measurements are independent from each other
k
pCz Ix) = | [pChi)
i=1
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SLAM: Recursive Bayes Filter

Sensor model: Beam-Endpoint Model

p(zt|x,.): How far away is the end point of the laser beam from the closest
obstacle

o
G_ --------------------------------------------- ® Low likelihood
@)
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SLAM: Recursive Bayes Filter

Sensor model: Beam-Endpoint Model

p(zt|x,.): How far away is the end point of the laser beam from the closest

obstacle -
O

G_ .............. @ High likelihood
@)
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SLAM: Recursive Bayes Filter

Sensor model: Beam-Endpoint Model

p(zt|x,.): How far away is the end point of the laser beam from the closest
obstacle

Likelihood field
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SLAM: Recursive Bayes Filter

Sensor model: Beam-Endpoint Model

Likelihood
field

The brighter the value that the beam ends, the higher the p(z}|x,)
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SLAM: Recursive Bayes Filter

Sensor model: Ray-cast Model
* Additionally considers the first obstacle along the beam
* Mixture of 4 components

Exponential decay

Gaussian distribution
/ / Truncated maximum value

Uniform distribution
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SLAM: Least Squares

Least Squares in general:

34
|

32
|

* An approach for computing a solution for
an overdetermined system
 “More equations than unknowns” 2

30
|

26
|

* Minimizes the sum of the squared errors
: H | I I I [ [ I I
in between measurements and the function s ms 30 3o a4 as a8 40
that we wish to compute n

argmini[yi _ f(xii al:k)]z

* Standard approach to a large set of problems Error function
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SLAM: Least Squares

Least Squares in SLAM:

Given:
* A set of n observation functions: {f;(x)}i=1.n Where:
X isthe state vector (e.g., robot+map)
* Z; = f;(x) are the functions that map x to predicted measurements Z;
(what | am expecting to observe)
* Aset of n noisy measurements z;.,, about x

Goal:
* Estimate the state x which best explains z;
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SLAM: Least Squares

Least Squares in SLAM: in other “words”

fi(x) =2, Z,

/ f2(x) = 2, Z3

X § fz(x) = 23 Z3

fan(x) =2, Zn

State Predicted Real
(unknown) measurements measurements
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SLAM: Least Squares

Example
e X :position of 3D world points and ~
X) =12 V4
6DoF robot poses fi(x) Al 1
* Z;: depth measurements of the 3D / fo(x) = 2, Z,
points recorded by a LiDAR x f3(x) = 2, Z;
 {f;(x)}: LIDAR projection function \ o
fn(x) = Zy Zy

* Estimate the most likely position of
3D points based on the laser projections
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SLAM: Least Squares

Error function

 We can define the error of a single measurement as:
e;=2;— 2z, = z; — fi(x)
for each measurement

 We assume zero-mean Gaussian error with information matrix (inverse of
covariance): ;

 The squared error is:
e; = e; Qe

weighted since measurements may not have the same uncertainty
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SLAM: Least Squares

Minimization over all measurements

* Find the state x* that minimizes the error of all measurements

x* = argmin F(x) < Global error (scalar)
o n
X* = argmin z e;(x) < Squared error terms (scalar)
* o=
n
X* = argmin 2 e? (x)ﬂiel-(x)< Error terms (vector)
X :
=1
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SLAM: Least Squares

Minimization over all measurements

* Find the state x* that minimizes the error of all measurements

n

x* = argminz e! (x)Q;e;(x)
¥ =

e;(x) is typically non-linear
* no closed-form solution

} Iterative local linearizations
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SLAM: Bundle Adjustment

Bundle Adjustment (BA) is a least square approach, where

e State contains both the robot poses and the map

 Erroris computed as the displacement of representative points captured by the
camera and their projection

* Z; = fi(x)

[
~ <
S~
~~
~~
S~
~~

;

L
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SLAM: Bundle Adjustment

Bundle Adjustment (BA) is a least square approach, where

e State contains both the robot poses and the map

 Erroris computed as the displacement of representative points captured by the
camera and their projection

* Z; = fi(x)

[ ] Zi




Localization and Mapping for Autonomous Mobile Systems

SLAM: Bundle Adjustment

Bundle Adjustment (BA) is a least square approach, where

e State contains both the robot poses and the map

 Erroris computed as the displacement of representative points captured by the
camera and their projection

* Z; = fi(x)

[ ] Zi

c e =12 — fi(x)
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SLAM: Sliding-window Least Squares
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SLAM: Some of the most representative approaches

Real-Time LiDAR for LiTAMIN2: Ultra Light LiDAR-based SLAM using
3D SLAM

Geometric Approximation applied with KL-Divergence

Masashi Yokozuka , Kenji Koide , Shuji Oishi and Atsuhiko Banno

RICAL at Georgia Tech
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SLAM: Some of the most representative approaches

Real-Time
Camera Tracking

In Unknown Scenes

Davison, Andrew J., et al
MonoSLAM, 2003

S MULTIPLE AUTONOMOUS ROBOTIC SYSTEMS

Parallel Tracking and Mapping O A LABORATORY

o) =
e e o - @ _—

£ \ A L z .
(4 % 0 ‘ 3

( g ! ¥y QA A X3
N4 ) P | ‘. ;

for Small AR Workspaces

\‘\-4\~/..

ISMAR 2007 video results . _ , _ _
Vision-aided Inertial Navigation

Georg Klein and David Murray Live demo on the Google GLASS
Active Vision Laboratory
University of Oxford MARS Lab

University of Minnesota
2015
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SLAM: Some of the most representative approaches

StructSLAM:

Visual SLAM with Building Structure Lines

™\ Hui Zhong Zhou, Danping Zou et al.

"f Shanghai Key Laboratory of Navigation and Location Based Services
mar) 4 &/ Shanghai Jiao Tong University
s/ Apirl 2014
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SLAM: Some of the most representative approaches

LSD-SLAM: Large-Scale Direct Monocular SLAM

Instituto Universitario de Investigacion
= enlngenieria de Aragon

o i
4%  Universidad Zaragoza

s Universidad

P

Jakob Engel, Thomas Schéps, Daniel Cremers TT]
ECCV 2014, Zurich

101 Zaragoza

ORB-SLAM2: an Open-Source SLAM System
for Monocular, Stereo and RGB-D Cameras

Raul Mur-Artal and Juan D. Tardds

raulmur@unizar.es tardos@unizar.es

Computer Vision Group
Department of Computer Science
Technical University of Munich




Localization and Mapping for Autonomous Mobile Systems

SLAM: Some of the most representative approaches

DM-VIO: Delayed Marginalization
Visual-Inertial Odometry

Lukas von Stumberg, Daniel Cremers

Computer Vision Group
Technical University of Munich

s Universidad % r
ROBOTICS \

i0f  Zaragoza

i :
4 enlngenieria de Aragén
e “ .

4% UniversidadZaragoza

Visual-Inertial Monocular SLAM with Map Reuse

Raul Mur-Artal and Juan D. Tardds

Visual-Inertial ORB-SLAM

Sequence: MH_05_difficult
Dataset: EuURoC MAV Dataset
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SLAM: Some of the most representative approaches

Large-Scale Cooperative 3D Visual-Inertial Mapping
in a Manhattan World

Chao X. Guo, Kourosh Sartipi, Ryan DuToit, Georgios Georgiou,
Ruipeng Li, John O'Leary, Esha D. Nerurkar,

Joel A. Hesch and Stergios |. Roumeliotis




