
Localization and Mapping for Autonomous Mobile Systems

Robust Mechatronics

Dr Loukas Bampis, Assistant Professor
Mechatronics & Systems Automation Lab



Localization and Mapping for Autonomous Mobile Systems

What we previously discussed:

Evolution of SLAM Structure from Motion

What is SLAM?



SLAM:: The online and real-time version

Difference between Structure from Motion and SLAM
Why not to use such approaches in robotics applications?

• We cannot wait for all the frames to be captured

• Even then, we cannot expect to process all these frames in real-time
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SLAM:: If we were to split the two functionalities

Localization
Estimate the robot’s pose given landmarks

Mapping
Estimate the landmarks given the robot’s poses
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Modeling SLAM

Given
• The robot’s controls

𝑢1:𝑇 = 𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑇
• Observations

𝑧1:𝑇 = 𝑧1, 𝑧2, 𝑧3, … , 𝑧𝑇

Wanted
• Map of the environment

𝑚
• Path of the robot

𝑥0:𝑇 = 𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑇
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Modeling SLAM

Modeling this problem probabilistically
• There is uncertainty in the measured robot’s motion and observations
• We can use probability theory to represent this uncertainty

“The robot is here” “The robot is somewhere here 
with this level of certainty”

𝑥 𝑥

𝑝 𝑥

Localization and Mapping for Autonomous Mobile Systems



Modeling SLAM

Modeling this problem probabilistically

𝑝 𝑥0:𝑇 , 𝑚 𝑧1:𝑇 , 𝑢1:𝑇)

Distribution

Path Map

Given Observations

Control commands
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What do these probabilities actually mean?

Modeling SLAM
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Modeling SLAM: State Estimation

Estimate the state 𝑥 of a system given observations 𝑧 and controls 𝑢.

𝑝 𝑥 𝑧, 𝑢)

• State is defined by us and can contain any combination of the robot’s pose and the map

• As we propagate in time, this distribution will become better and better

• Finally, the expected value (mean) will give us our best estimate for the state
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Modeling SLAM: State Estimation

Estimate the state 𝑥 of a system given observations 𝑧 and controls 𝑢.

𝑝 𝑥𝑡 𝑧1:𝑡 , 𝑢1:𝑡)

• State is defined by us and can contain any combination of the robot’s pose and the map

• As we propagate in time, this distribution will become better and better

• Finally, the expected value (mean) will give us our best estimate for the state
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SLAM: Recursive Bayes Filter

The basis of on-line SLAM
• We need to build a recursive formula:

𝑓 𝑥𝑖 = 𝑔(𝑓 𝑥𝑖−𝑘 )

Examples

• 𝑓 𝑥 = 𝑓 𝑥 − 2 + 1

• 𝑥𝑖+1 = 3𝑥𝑖 + 2
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SLAM: Recursive Bayes Filter

Localization and Mapping for Autonomous Mobile Systems

The door sensing robot example



SLAM: Recursive Bayes Filter
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SLAM: Recursive Bayes Filter
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SLAM: Recursive Bayes Filter
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SLAM: Recursive Bayes Filter
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SLAM: Recursive Bayes Filter

𝑏𝑒𝑙 𝑥𝑡 = 𝑝 𝑥𝑡 𝑧1:𝑡, 𝑢1:𝑡) // Belief definition
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SLAM: Recursive Bayes Filter

𝑏𝑒𝑙 𝑥𝑡 = 𝑝 𝑥𝑡 𝑧1:𝑡, 𝑢1:𝑡)

= 𝜂 𝑝 𝑧𝑡 𝑥𝑡 , 𝑧1:𝑡−1, 𝑢1:𝑡 𝑝 𝑥𝑡 𝑧1:𝑡−1, 𝑢1:𝑡) // Bayes’ rule
𝜂: normalization constant

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃(𝐵)
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SLAM: Recursive Bayes Filter

𝑏𝑒𝑙 𝑥𝑡 = 𝑝 𝑥𝑡 𝑧1:𝑡, 𝑢1:𝑡)

= 𝜂 𝑝 𝑧𝑡 𝑥𝑡 , 𝑧1:𝑡−1, 𝑢1:𝑡 𝑝 𝑥𝑡 𝑧1:𝑡−1, 𝑢1:𝑡)

= 𝜂 𝑝 𝑧𝑡 𝑥𝑡 𝑝 𝑥𝑡 𝑧1:𝑡−1, 𝑢1:𝑡) // Markov assumption
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SLAM: Recursive Bayes Filter

𝑏𝑒𝑙 𝑥𝑡 = 𝑝 𝑥𝑡 𝑧1:𝑡, 𝑢1:𝑡)

= 𝜂 𝑝 𝑧𝑡 𝑥𝑡 , 𝑧1:𝑡−1, 𝑢1:𝑡 𝑝 𝑥𝑡 𝑧1:𝑡−1, 𝑢1:𝑡)

= 𝜂 𝑝 𝑧𝑡 𝑥𝑡 𝑝 𝑥𝑡 𝑧1:𝑡−1, 𝑢1:𝑡)

= 𝜂 𝑝 𝑧𝑡 𝑥𝑡 න
𝑥𝑡−1

𝑝 𝑥𝑡 𝑥𝑡−1, 𝑧1:𝑡−1, 𝑢1:𝑡) 𝑝 𝑥𝑡−1 𝑧1:𝑡−1, 𝑢1:𝑡) 𝑑𝑥𝑡−1 // Law of total probability
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SLAM: Recursive Bayes Filter

𝑏𝑒𝑙 𝑥𝑡 = 𝑝 𝑥𝑡 𝑧1:𝑡, 𝑢1:𝑡)

= 𝜂 𝑝 𝑧𝑡 𝑥𝑡 , 𝑧1:𝑡−1, 𝑢1:𝑡 𝑝 𝑥𝑡 𝑧1:𝑡−1, 𝑢1:𝑡)

= 𝜂 𝑝 𝑧𝑡 𝑥𝑡 𝑝 𝑥𝑡 𝑧1:𝑡−1, 𝑢1:𝑡)

= 𝜂 𝑝 𝑧𝑡 𝑥𝑡 න
𝑥𝑡−1

𝑝 𝑥𝑡 𝑥𝑡−1, 𝑧1:𝑡−1, 𝑢1:𝑡) 𝑝 𝑥𝑡−1 𝑧1:𝑡−1, 𝑢1:𝑡) 𝑑𝑥𝑡−1 // Law of total probability

Law of total probability:

𝑃 𝐴 = න
𝐵

𝑃 𝐴 𝐵 𝑃 𝐵 𝑑𝐵

For the discrete case, it may be more 
intuitive:

𝑃 𝐴 =෍

𝐵

𝑃 𝐴 𝐵 𝑃 𝐵
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= 𝜂 𝑝 𝑧𝑡 𝑥𝑡 න
𝑥𝑡−1

𝑝 𝑥𝑡 𝑥𝑡−1, 𝑢𝑡) 𝑝 𝑥𝑡−1 𝑧1:𝑡−1, 𝑢1:𝑡) 𝑑𝑥𝑡−1

SLAM: Recursive Bayes Filter

𝑏𝑒𝑙 𝑥𝑡 = 𝑝 𝑥𝑡 𝑧1:𝑡, 𝑢1:𝑡)

= 𝜂 𝑝 𝑧𝑡 𝑥𝑡 , 𝑧1:𝑡−1, 𝑢1:𝑡 𝑝 𝑥𝑡 𝑧1:𝑡−1, 𝑢1:𝑡)

= 𝜂 𝑝 𝑧𝑡 𝑥𝑡 𝑝 𝑥𝑡 𝑧1:𝑡−1, 𝑢1:𝑡)

= 𝜂 𝑝 𝑧𝑡 𝑥𝑡 න
𝑥𝑡−1

𝑝 𝑥𝑡 𝑥𝑡−1, 𝑧1:𝑡−1, 𝑢1:𝑡) 𝑝 𝑥𝑡−1 𝑧1:𝑡−1, 𝑢1:𝑡) 𝑑𝑥𝑡−1

// Markov assumption
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= 𝜂 𝑝 𝑧𝑡 𝑥𝑡 න
𝑥𝑡−1

𝑝 𝑥𝑡 𝑥𝑡−1, 𝑢𝑡) 𝑝 𝑥𝑡−1 𝑧1:𝑡−1, 𝑢1:𝑡) 𝑑𝑥𝑡−1

SLAM: Recursive Bayes Filter

𝑏𝑒𝑙 𝑥𝑡 = 𝑝 𝑥𝑡 𝑧1:𝑡, 𝑢1:𝑡)

= 𝜂 𝑝 𝑧𝑡 𝑥𝑡 , 𝑧1:𝑡−1, 𝑢1:𝑡 𝑝 𝑥𝑡 𝑧1:𝑡−1, 𝑢1:𝑡)

= 𝜂 𝑝 𝑧𝑡 𝑥𝑡 𝑝 𝑥𝑡 𝑧1:𝑡−1, 𝑢1:𝑡)

= 𝜂 𝑝 𝑧𝑡 𝑥𝑡 න
𝑥𝑡−1

𝑝 𝑥𝑡 𝑥𝑡−1, 𝑧1:𝑡−1, 𝑢1:𝑡) 𝑝 𝑥𝑡−1 𝑧1:𝑡−1, 𝑢1:𝑡) 𝑑𝑥𝑡−1

= 𝜂 𝑝 𝑧𝑡 𝑥𝑡 න
𝑥𝑡−1

𝑝 𝑥𝑡 𝑥𝑡−1, 𝑢𝑡) 𝑝 𝑥𝑡−1 𝑧1:𝑡−1, 𝑢1:𝑡−1) 𝑑𝑥𝑡−1 // Independence assumption
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= 𝜂 𝑝 𝑧𝑡 𝑥𝑡 න
𝑥𝑡−1

𝑝 𝑥𝑡 𝑥𝑡−1, 𝑢𝑡) 𝑝 𝑥𝑡−1 𝑧1:𝑡−1, 𝑢1:𝑡) 𝑑𝑥𝑡−1

SLAM: Recursive Bayes Filter

𝑏𝑒𝑙 𝑥𝑡 = 𝑝 𝑥𝑡 𝑧1:𝑡, 𝑢1:𝑡)

= 𝜂 𝑝 𝑧𝑡 𝑥𝑡 , 𝑧1:𝑡−1, 𝑢1:𝑡 𝑝 𝑥𝑡 𝑧1:𝑡−1, 𝑢1:𝑡)

= 𝜂 𝑝 𝑧𝑡 𝑥𝑡 𝑝 𝑥𝑡 𝑧1:𝑡−1, 𝑢1:𝑡)

= 𝜂 𝑝 𝑧𝑡 𝑥𝑡 න
𝑥𝑡−1

𝑝 𝑥𝑡 𝑥𝑡−1, 𝑧1:𝑡−1, 𝑢1:𝑡) 𝑝 𝑥𝑡−1 𝑧1:𝑡−1, 𝑢1:𝑡) 𝑑𝑥𝑡−1

= 𝜂 𝑝 𝑧𝑡 𝑥𝑡 න
𝑥𝑡−1

𝑝 𝑥𝑡 𝑥𝑡−1, 𝑢𝑡) 𝑝 𝑥𝑡−1 𝑧1:𝑡−1, 𝑢1:𝑡−1) 𝑑𝑥𝑡−1

= 𝜂 𝑝 𝑧𝑡 𝑥𝑡 න
𝑥𝑡−1

𝑝 𝑥𝑡 𝑥𝑡−1, 𝑢𝑡) 𝑏𝑒𝑙 𝑥𝑡−1 𝑑𝑥𝑡−1 // Recursive term
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= 𝜂 𝑝 𝑧𝑡 𝑥𝑡 න
𝑥𝑡−1

𝑝 𝑥𝑡 𝑥𝑡−1, 𝑢𝑡) 𝑏𝑒𝑙 𝑥𝑡−1 𝑑𝑥𝑡−1

= 𝜂 𝑝 𝑧𝑡 𝑥𝑡 න
𝑥𝑡−1

𝑝 𝑥𝑡 𝑥𝑡−1, 𝑢𝑡) 𝑝 𝑥𝑡−1 𝑧1:𝑡−1, 𝑢1:𝑡) 𝑑𝑥𝑡−1

SLAM: Recursive Bayes Filter

𝑏𝑒𝑙 𝑥𝑡 = 𝑝 𝑥𝑡 𝑧1:𝑡, 𝑢1:𝑡)

= 𝜂 𝑝 𝑧𝑡 𝑥𝑡 , 𝑧1:𝑡−1, 𝑢1:𝑡 𝑝 𝑥𝑡 𝑧1:𝑡−1, 𝑢1:𝑡)

= 𝜂 𝑝 𝑧𝑡 𝑥𝑡 𝑝 𝑥𝑡 𝑧1:𝑡−1, 𝑢1:𝑡)

= 𝜂 𝑝 𝑧𝑡 𝑥𝑡 න
𝑥𝑡−1

𝑝 𝑥𝑡 𝑥𝑡−1, 𝑧1:𝑡−1, 𝑢1:𝑡) 𝑝 𝑥𝑡−1 𝑧1:𝑡−1, 𝑢1:𝑡) 𝑑𝑥𝑡−1

= 𝜂 𝑝 𝑧𝑡 𝑥𝑡 න
𝑥𝑡−1

𝑝 𝑥𝑡 𝑥𝑡−1, 𝑢𝑡) 𝑝 𝑥𝑡−1 𝑧1:𝑡−1, 𝑢1:𝑡−1) 𝑑𝑥𝑡−1

// Recursive term

// Independence assumption

// Markov assumption

// Law of total probability

// Markov assumption

// Bayes’ rule
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We typically split the process into a Prediction and a Correction Step

• Prediction Step

• Correction Step

𝑏𝑒𝑙 𝑥𝑡 = න
𝑥𝑡−1

𝑝 𝑥𝑡 𝑥𝑡−1, 𝑢𝑡) 𝑏𝑒𝑙 𝑥𝑡−1 𝑑𝑥𝑡−1

SLAM: Recursive Bayes Filter

𝑏𝑒𝑙 𝑥𝑡 = 𝜂 𝑝 𝑧𝑡 𝑥𝑡) 𝑏𝑒𝑙 𝑥𝑡

Motion model

Observation
model (Also: measurement or sensor model)
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Localization and Mapping for Autonomous Mobile Systems

Motion Model

Observation Model

New belief generation

𝑝 𝑥𝑡 𝑥𝑡−1, 𝑢𝑡)

𝑝 𝑧𝑡 𝑥𝑡)

𝑏𝑒𝑙 𝑥𝑡



𝑝 𝑥𝑡 𝑥𝑡−1, 𝑢𝑡)

Motion model: specifies a posterior probability that the
control command 𝑢𝑡 carries the robot from 𝑥𝑡−1to 𝑥𝑡

SLAM: Recursive Bayes Filter

Instead of control commands, 𝑢𝑡 can come from a proprioceptive sensor

• Odometry-based
• E.g., wheel encoders

• Velocity-based
• E.g., IMU
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Motion model: Standard odometry model

• We define poses in the 2D world as (𝑥, 𝑦, 𝜃)

• The movement from ( ҧ𝑥, ത𝑦, ҧ𝜃) to ( ҧ𝑥′, ത𝑦′, ҧ𝜃′) can be 
expressed as: 𝑢 = (𝛿𝑟𝑜𝑡1, 𝛿𝑡𝑟𝑎𝑛𝑠, 𝛿𝑟𝑜𝑡2)

𝛿𝑡𝑟𝑎𝑛𝑠 = ҧ𝑥′ − ҧ𝑥 2 + ത𝑦′ − ത𝑦 2

𝛿𝑟𝑜𝑡1 = atan2 ത𝑦′ − ത𝑦, ҧ𝑥′ − ҧ𝑥 − ҧ𝜃 𝛿𝑟𝑜𝑡2 = ҧ𝜃′ − ҧ𝜃 − 𝛿𝑟𝑜𝑡1

( ҧ𝑥, ത𝑦, ҧ𝜃)
( ҧ𝑥′, ത𝑦′, ҧ𝜃′)

𝛿𝑟𝑜𝑡2

𝛿𝑟𝑜𝑡1

SLAM: Recursive Bayes Filter
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Motion model: Standard odometry model
Probability distribution for 

• Gaussian Model

• Non-Gaussian Model

SLAM: Recursive Bayes Filter

𝑝 𝑥𝑡 𝑥𝑡−1, 𝑢𝑡)
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Motion model: Standard velocity model

• We define poses in the 2D world as (𝑥, 𝑦, 𝜃)

• The movement from ( ҧ𝑥, ത𝑦, ҧ𝜃) to ( ҧ𝑥′, ത𝑦′, ҧ𝜃′) can be 
expressed as: 𝑢 = (𝑣, 𝜔)

ҧ𝑥′
ത𝑦′
ҧ𝜃′

=
ҧ𝑥
ത𝑦
ҧ𝜃

+

−
𝑣

𝜔
sin ҧ𝜃 +

𝑣

𝜔
sin( ҧ𝜃 + 𝜔Δ𝑡)

𝑣

𝜔
cos ҧ𝜃 −

𝑣

𝜔
cos( ҧ𝜃 + 𝜔Δ𝑡)

𝜔Δ𝑡

( ҧ𝑥′, ത𝑦′, ҧ𝜃′)

𝑢 = (𝑣, 𝜔)

ҧ𝜃

( ҧ𝑥, ത𝑦, ҧ𝜃)

SLAM: Recursive Bayes Filter

We have an issue here!
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Motion model: Standard velocity model

• The previous model forces the robot to execute a curve
• What if we need the robot to face on a different direction

( ҧ𝑥′, ത𝑦′, ҧ𝜃′)

𝑢 = (𝑣, 𝜔)

ҧ𝜃

( ҧ𝑥, ത𝑦, ҧ𝜃)
( ҧ𝑥′, ത𝑦′, ҧ𝜃′)

𝑢 = (𝑣, 𝜔)

ҧ𝜃

( ҧ𝑥, ത𝑦, ҧ𝜃)

Odometry model: 3DoF – Velocity model: 2DoF

SLAM: Recursive Bayes Filter
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Motion model: Standard velocity model

• We define poses in the 2D world as (𝑥, 𝑦, 𝜃)

• The movement from ( ҧ𝑥, ത𝑦, ҧ𝜃) to ( ҧ𝑥′, ത𝑦′, ҧ𝜃′) can be 
expressed as: 𝑢 = (𝑣, 𝜔, 𝜸)

ҧ𝑥′
ത𝑦′
ҧ𝜃′

=
ҧ𝑥
ത𝑦
ҧ𝜃

+

−
𝑣

𝜔
sin ҧ𝜃 +

𝑣

𝜔
sin( ҧ𝜃 + 𝜔Δ𝑡)

𝑣

𝜔
cos ҧ𝜃 −

𝑣

𝜔
cos( ҧ𝜃 + 𝜔Δ𝑡)

𝜔Δ𝑡 + 𝜸

( ҧ𝑥′, ത𝑦′, ҧ𝜃′)

𝑢 = (𝑣, 𝜔)

ҧ𝜃

( ҧ𝑥, ത𝑦, ҧ𝜃)

SLAM: Recursive Bayes Filter
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Motion model: Standard velocity model
Probability distribution for 

• Gaussian Model

• Non-Gaussian Model

SLAM: Recursive Bayes Filter

𝑝 𝑥𝑡 𝑥𝑡−1, 𝑢𝑡)
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𝑝 𝑧𝑡 𝑥𝑡)

Sensor model: Specifies a posterior probability that the current state 𝑥𝑡
(robot+map) affects the observation 𝑧𝑡

SLAM: Recursive Bayes Filter

• Each observation 𝑧𝑡 consists of 𝐾 measurements

𝑧𝑡 = 𝑧𝑡
1, … , 𝑧𝑡

𝑘

• Assumption: Individual measurements are independent from each other

𝑝 𝑧𝑡 𝑥𝑡) =ෑ

𝑖=1

𝑘

𝑝(𝑧𝑡
𝑖|𝑥𝑡)

Heavily depends on the sensors; Let’s assume a Laser Scanner
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Sensor model: Beam-Endpoint Model

SLAM: Recursive Bayes Filter

𝑝(𝑧𝑡
𝑖|𝑥𝑡): How far away is the end point of the laser beam from the closest 

obstacle

Low likelihood
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Sensor model: Beam-Endpoint Model

SLAM: Recursive Bayes Filter

𝑝(𝑧𝑡
𝑖|𝑥𝑡): How far away is the end point of the laser beam from the closest 

obstacle

High likelihood
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Sensor model: Beam-Endpoint Model

SLAM: Recursive Bayes Filter

𝑝(𝑧𝑡
𝑖|𝑥𝑡): How far away is the end point of the laser beam from the closest 

obstacle

Map

Likelihood field
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Sensor model: Beam-Endpoint Model

SLAM: Recursive Bayes Filter

The brighter the value that the beam ends, the higher the 𝑝(𝑧𝑡
𝑖|𝑥𝑡)

Map
Likelihood

field
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SLAM: Recursive Bayes Filter

Sensor model: Ray-cast Model
• Additionally considers the first obstacle along the beam
• Mixture of 4 components

Gaussian distribution

Exponential decay
Truncated maximum value

Uniform distribution
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SLAM: Least Squares

Least Squares in general:

• An approach for computing a solution for 
an overdetermined system
• “More equations than unknowns”

• Minimizes the sum of the squared errors 
in between measurements and the function
that we wish to compute

• Standard approach to a large set of problems

argmin
𝑎1:𝑘

෍

𝑖=1

𝑛

𝑦𝑖 − 𝑓(𝑥𝑖 , 𝑎1:𝑘)
2

Error function
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SLAM: Least Squares

Least Squares in SLAM:

Given:
• A set of 𝑛 observation functions: 𝑓𝑖(𝒙) where:

• 𝒙 is the state vector (e.g., robot+map)
• ො𝒛𝑖 = 𝑓𝑖(𝒙) are the functions that map 𝒙 to predicted measurements ො𝒛𝑖

(what I am expecting to observe)
• A set of 𝑛 noisy measurements 𝒛𝑖:𝑛 about 𝒙

Goal:
• Estimate the state 𝒙 which best explains 𝒛𝑖

, 𝑖 = 1: 𝑛
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SLAM: Least Squares

Least Squares in SLAM: in other “words”

𝒙

𝑓1 𝒙 = ො𝒛1

𝑓2 𝒙 = ො𝒛2

𝑓3 𝒙 = ො𝒛3

𝑓𝑛 𝒙 = ො𝒛𝑛

…

𝒛1

𝒛2

𝒛3

𝒛𝑛

State
(unknown)

Predicted
measurements

Real
measurements

…
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Example

• 𝒙 : position of 3D world points and
6DoF robot poses

• 𝒛𝑖: depth measurements of the 3D
points recorded by a LiDAR

• 𝑓𝑖(𝒙) : LiDAR projection function

• Estimate the most likely position of
3D points based on the laser projections

SLAM: Least Squares

𝒙

𝑓1 𝒙 = ො𝒛1

𝑓2 𝒙 = ො𝒛2

𝑓3 𝒙 = ො𝒛3

𝑓𝑛 𝒙 = ො𝒛𝑛

…

𝒛1

𝒛2

𝒛3

𝒛𝑛

…
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SLAM: Least Squares

Error function

• We can define the error of a single measurement as:
𝒆𝑖 = 𝒛𝑖 − ෝ𝒛𝑖 = 𝒛𝑖 − 𝑓𝑖 𝒙

for each measurement

• We assume zero-mean Gaussian error with information matrix (inverse of 
covariance): 𝛀𝑖

• The squared error is:

𝑒𝑖 = 𝒆𝑖
𝑇𝛀𝑖𝒆𝑖

weighted since measurements may not have the same uncertainty
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SLAM: Least Squares

Minimization over all measurements

• Find the state 𝒙∗ that minimizes the error of all measurements 

𝒙∗ = argmin
𝒙

𝐹(𝒙)

𝒙∗ = argmin
𝒙

෍

𝑖=1

𝑛

𝑒𝑖(𝑥)

𝒙∗ = argmin
𝒙

෍

𝑖=1

𝑛

𝒆𝑖
𝑇 𝒙 𝛀𝑖𝒆𝑖(𝒙)

Global error (scalar)

Squared error terms (scalar)

Error terms (vector)
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SLAM: Least Squares

Minimization over all measurements

• Find the state 𝒙∗ that minimizes the error of all measurements 

𝒙∗ = argmin
𝒙

෍

𝑖=1

𝑛

𝒆𝑖
𝑇 𝒙 𝛀𝑖𝒆𝑖(𝒙)

• 𝑒𝑖 𝒙 is typically non-linear
• no closed-form solution

Iterative local linearizations
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SLAM: Bundle Adjustment

Bundle Adjustment (BA) is a least square approach, where

• State contains both the robot poses and the map

• Error is computed as the displacement of representative points captured by the 
camera and their projection

• ො𝒛𝑖 = 𝑓𝑖 𝒙
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SLAM: Bundle Adjustment

Bundle Adjustment (BA) is a least square approach, where

• State contains both the robot poses and the map

• Error is computed as the displacement of representative points captured by the 
camera and their projection

• ො𝒛𝑖 = 𝑓𝑖 𝒙

• 𝒛𝑖

Localization and Mapping for Autonomous Mobile Systems



SLAM: Bundle Adjustment

Bundle Adjustment (BA) is a least square approach, where

• State contains both the robot poses and the map

• Error is computed as the displacement of representative points captured by the 
camera and their projection

• ො𝒛𝑖 = 𝑓𝑖 𝒙

• 𝒛𝑖

• 𝒆𝑖 = 𝒛𝑖 − 𝑓𝑖 𝒙

𝒆𝑖
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Sliding 
window LS

SLAM: Sliding-window Least Squares

Full LS
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SLAM: Some of the most representative approaches

Davison, Andrew J., et al
MonoSLAM, 2007
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SLAM: Some of the most representative approaches

Davison, Andrew J., et al
MonoSLAM, 2003
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SLAM: Some of the most representative approaches

Davison, Andrew J., et al
MonoSLAM, 2007
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SLAM: Some of the most representative approaches
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SLAM: Some of the most representative approaches
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SLAM: Some of the most representative approaches
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