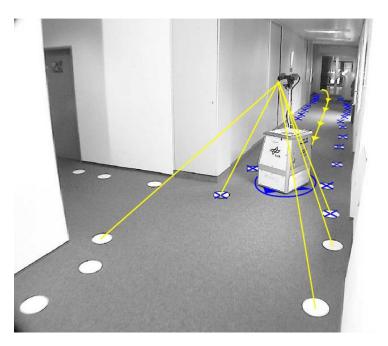
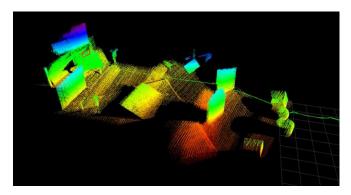
Robust Mechatronics

Localization and Mapping for Autonomous Mobile Systems

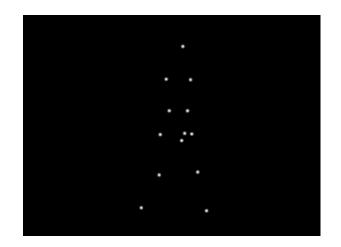


Dr Loukas Bampis, Assistant Professor Mechatronics & Systems Automation Lab

What is SLAM?

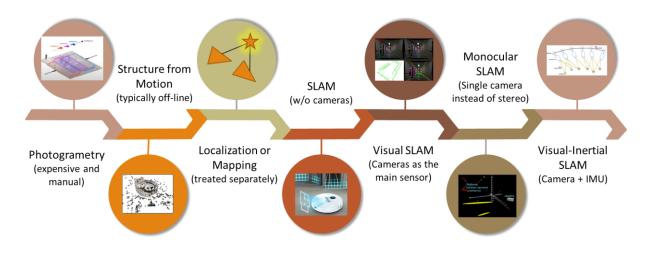


Structure from Motion

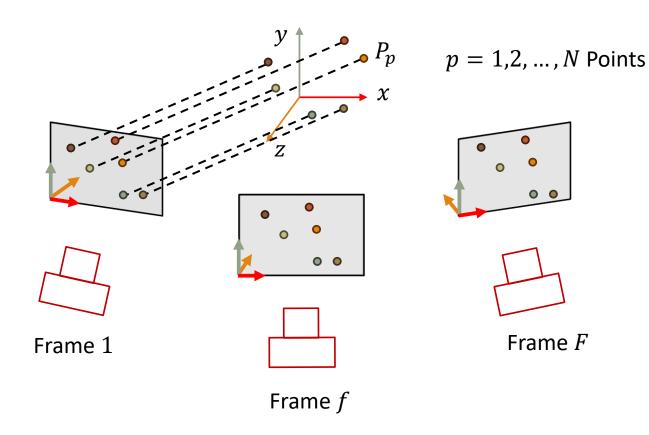


Evolution of SLAM

What we previously discussed:



Structure from Motion – SfM: The early-days approach



Tomasi and Kanade, 1992

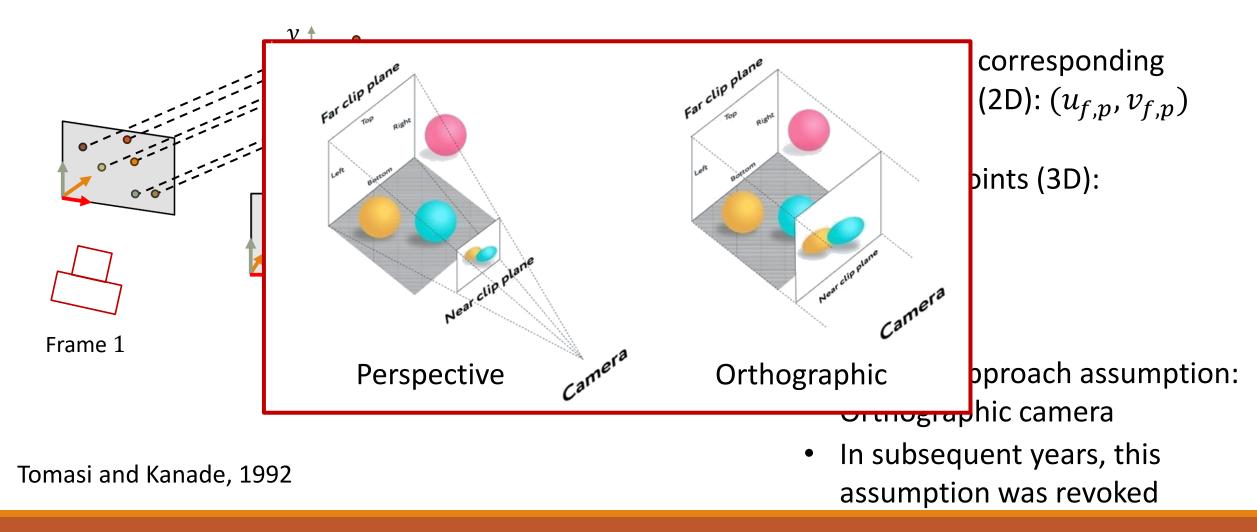
Given sets of corresponding image points (2D): $(u_{f,p}, v_{f,p})$

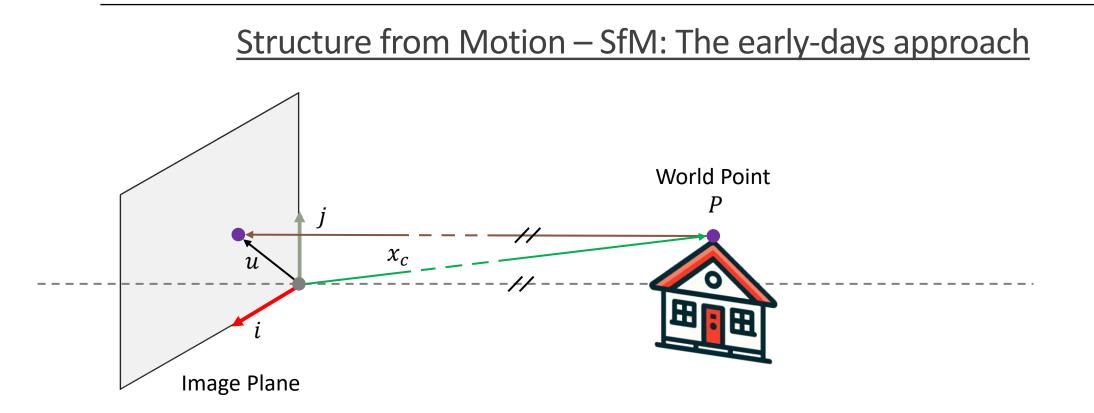
Find scene points (3D): $P_p = \begin{bmatrix} x_p \\ y_p \\ z_p \end{bmatrix}$

Early-days' approach assumption:

- Orthographic camera
- In subsequent years, this assumption was revoked

Structure from Motion – SfM: The early-days approach

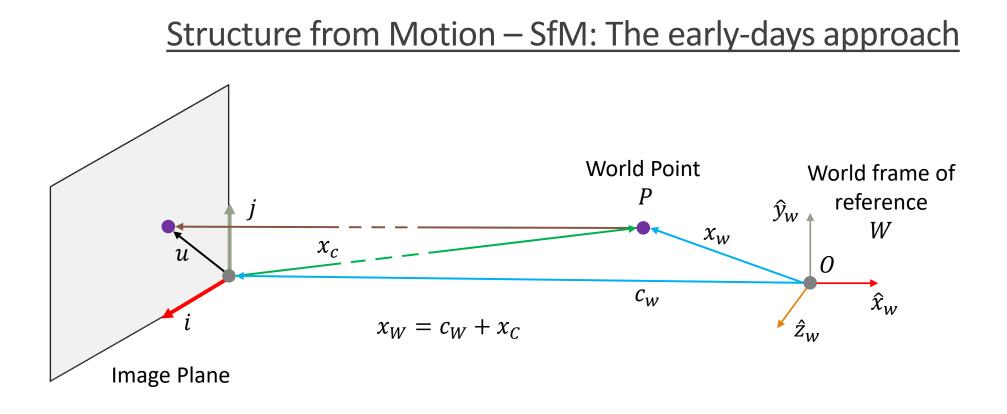




 $u = \mathbf{i} \cdot x_C = \mathbf{i}^T x_C$ $v = \mathbf{j} \cdot x_C = \mathbf{j}^T x_C$

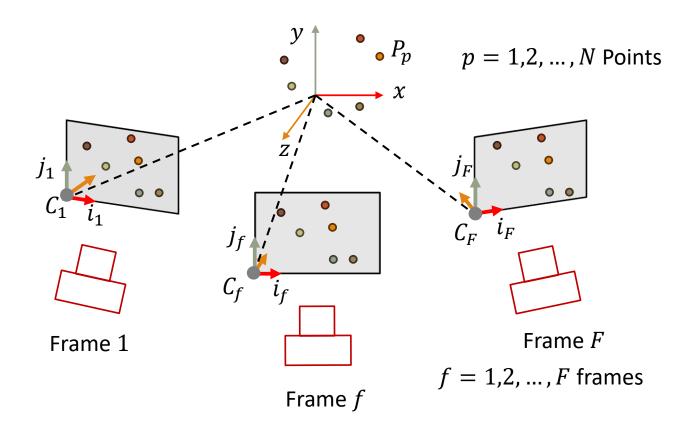
The orthographic camera assumption better-resembles the true perspective camera projection when the distance of the scene from the camera is large compared to the depth variation within the scene.

 $u = \mathbf{i}^T (P - C)$ $v = \mathbf{j}^T (P - C)$



$$u = \mathbf{i}^T x_C = \mathbf{i}^T (x_W - c_W) = \mathbf{i}^T (P - C) \qquad C: \text{ camera w.r.t. } W \text{ FoR}$$
$$v = \mathbf{j}^T x_C = \mathbf{j}^T (x_W - c_W) = \mathbf{j}^T (P - C) \qquad P: \text{ Point w.r.t. } W \text{ FoR}$$

Structure from Motion – SfM: The early-days approach



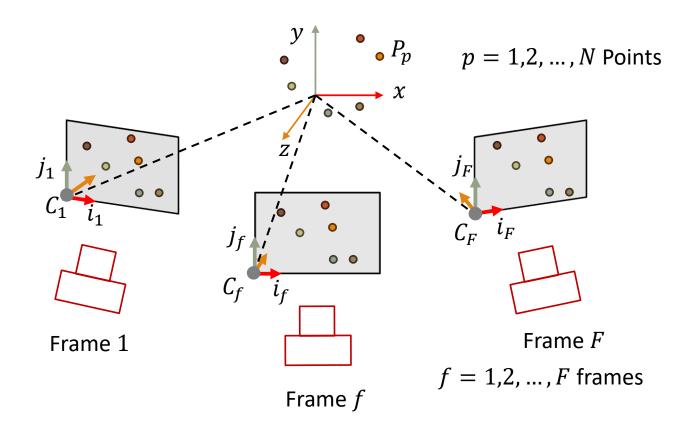
Given sets of corresponding image points (2D) in F frames: $(u_{f,p}, v_{f,p})$

Find scene points (3D): $P_p = \begin{bmatrix} \chi_p \\ y_p \\ z_p \end{bmatrix}$

Unknowns:

- Camera Positions: C_f
- Camera Orientations: $(\mathbf{i}_f, \mathbf{j}_f)$

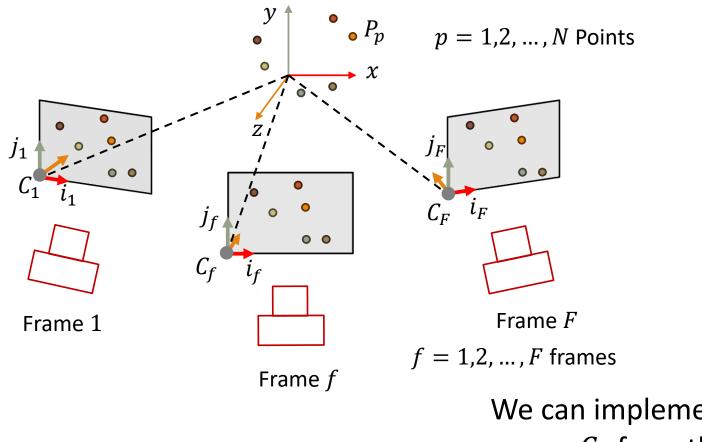
Structure from Motion – SfM: The early-days approach



Point P_p representation in frame f: $u_{f,p} = \mathbf{i}_f^T (P_p - C_f)$ $v_{f,p} = \mathbf{j}_f^T (P_p - C_f)$ We know We don't know those those

How do we solve for P_p ? While also not knowing $\{\mathbf{i}_f^T, \mathbf{j}_f^T\}$ and C_f .

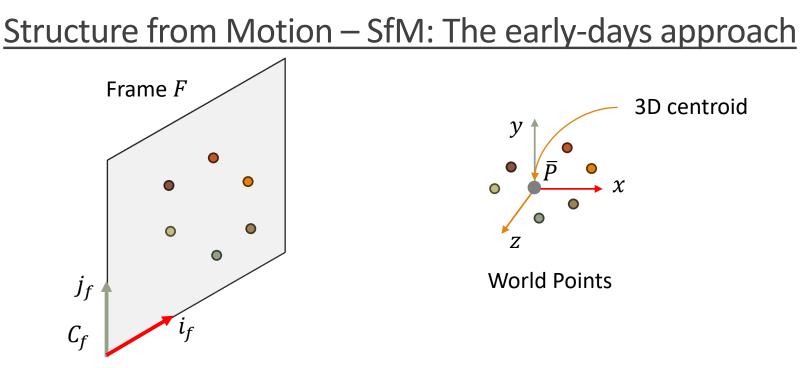
<u>Structure from Motion – SfM: The early-days approach</u>



Point P_p representation in frame f: $u_{f,p} = \mathbf{i}_f^T (P_p - C_f)$ $v_{f,p} = \mathbf{j}_f^T (P_p - C_f)$

We know We don't know those those

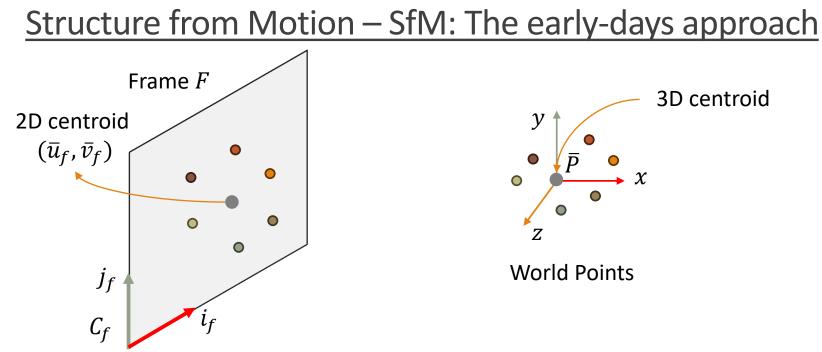
We can implement a trick to remove C_f from the equations.



First, put the world's origin frame at the centroid of the scene's points:

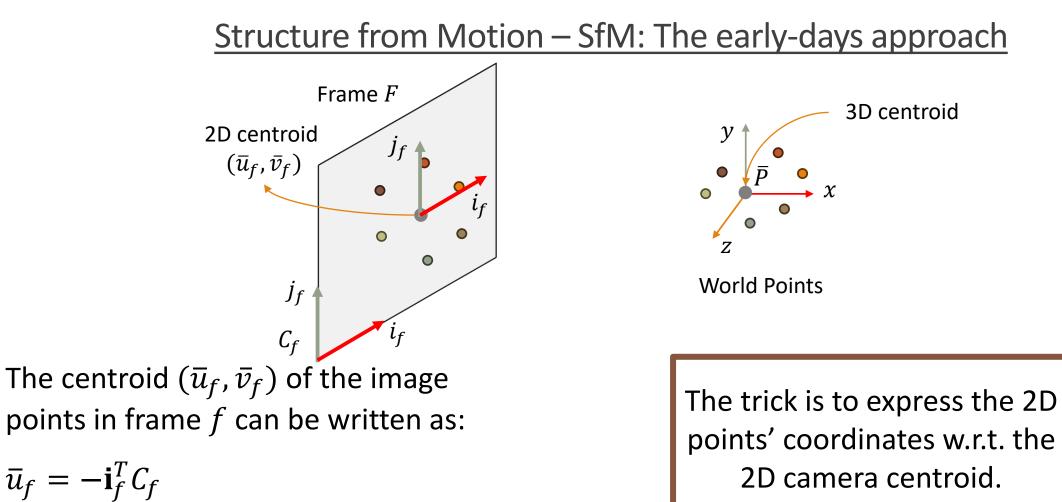
$$\frac{1}{N}\sum_{p=1}^{N}P_p=\overline{P}=0$$

This means that the points to be found (P_p) will be expressed w.r.t. the centroid of the world.

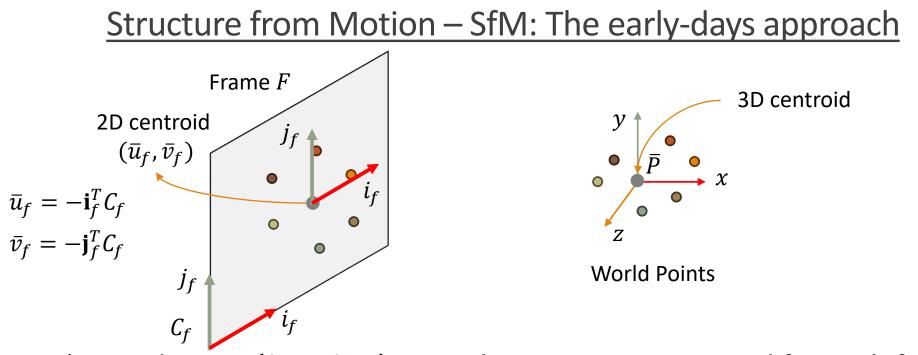


In accordance, the centroid (\bar{u}_f, \bar{v}_f) of the image points in frame f can be written as:

$$\bar{u}_f = \frac{1}{N} \sum_{p=1}^N u_{f,p} = \frac{1}{N} \sum_{p=1}^N \mathbf{i}_f^T (P_p - C_f) = \mathbf{i}_f^T \frac{1}{N} \sum_{p=1}^N P_p - \frac{1}{N} \sum_{p=1}^N \mathbf{i}_f^T C_f = -\frac{1}{N} \sum_{p=1}^N \mathbf{i}_f^T C_f = -\mathbf{i}_f^T C_f$$



 $\bar{u}_f = -\mathbf{i}_f^T C_f$ $\bar{v}_f = -\mathbf{j}_f^T C_f$



The 2D point's coordinates $(\tilde{u}_{f,p}, \tilde{v}_{f,p})$ w.r.t. the 2D camera centroid for each frame f:

$$\tilde{u}_{f,p} = u_{f,p} - \bar{u}_f = \mathbf{i}_f^T (P_p - C_f) - \bar{u}_f = \mathbf{i}_f^T (P_p - C_f) + \mathbf{i}_f^T C_f = \mathbf{i}_f^T P_p$$

$$\tilde{v}_{f,p} = v_{f,p} - \bar{v}_f = \mathbf{j}_f^T (P_p - C_f) - \bar{v}_f = \mathbf{j}_f^T (P_p - C_f) + \mathbf{j}_f^T C_f = \mathbf{j}_f^T P_p$$

$$C_f \text{ removed}$$

<u>Structure from Motion – SfM: The early-days approach</u>

Observation Matrix W

Point 1 Image 1 $\ \ \widetilde{u}_{1,1}$		Point N $\widetilde{u}_{1,N}$] [\mathbf{i}_1^T]	$\widetilde{u}_{f,p} = \mathbf{i}_f^T P_p$ $\widetilde{v}_{f,p} = \mathbf{j}_f^T P_p$	$\begin{bmatrix} \tilde{u}_{f,p} \\ \tilde{v}_{f,p} \end{bmatrix} = \begin{bmatrix} \mathbf{i}_f^T \\ \mathbf{j}_f^T \end{bmatrix} P_p$
$\begin{array}{c c} \operatorname{Image 1} & \widetilde{u}_{1,1} \\ \operatorname{Image 2} & \widetilde{u}_{2,1} \\ \vdots \\ \operatorname{Image } F & \widetilde{u}_{F,1} \\ \operatorname{Image 1} & \widetilde{v}_{1,1} \\ \operatorname{Image 2} & \widetilde{v}_{2,1} \\ \vdots \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{vmatrix} \widetilde{u}_{F,N} \\ \widetilde{v}_{1,N} \\ \widetilde{v}_{2,N} \\ \vdots \end{vmatrix} = \begin{vmatrix} \mathbf{i}_F^T \\ \mathbf{j}_1^T \\ \mathbf{j}_2^T \\ \vdots \end{vmatrix} $	Point 1 Point 2 Point N • $\begin{bmatrix} P_1 & P_2 & \dots & P_N \end{bmatrix}$ $S_{3 \times N}$	$W_{2F \times N}$: Observation Matrix (known) $M_{2F \times 3}$: Camera Motion (unknown) $S_{3 \times N}$: Scene Structure (unknown)
Image $F \ \left[\widetilde{v}_{F,1} ight]$	$\widetilde{v}_{F,2}$ $W_{2F imes N}$	$\tilde{v}_{F,N} \int \begin{bmatrix} \mathbf{j}_F^T \\ \mathbf{j}_F^T \end{bmatrix} M_{2F\times}$		SfM: Find <i>M</i> and <i>S</i> from <i>W</i>

Structure from Motion – SfM: The early-days approach

$$W_{2F\times N} = M_{2F\times 3} \cdot S_{3\times N}$$

A

В

How can we solve for M and S?

Answer: Exploit matrix Rank and Singular Value Decomposition

Matrix Rank and its properties:

<u>Column Rank</u>: The number of linearly independent columns of the matrix $\rightarrow ColumnRank(A_{m \times n}) \leq n$

<u>Row Rank</u>: The number of linearly independent rows of the matrix $\rightarrow RowRank(A_{m \times n}) \leq m$ $W_{2F \times N}$: Observation Matrix $M_{2F \times 3}$: Camera Motion $S_{3 \times N}$: Scene Structure

Examples

$$= \begin{bmatrix} 1 & 2 & 4 \\ 2 & 3 & 7 \\ 3 & 4 & 10 \\ 4 & 5 & 13 \end{bmatrix} \qquad \begin{array}{l} A_3^c = 2A_1^c + A_2^c \\ ColumnRank(A) = 2 \\ \end{array}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \begin{array}{l} ColumnRank(B) = 3 \\ Full Rank \end{array}$$

Structure from Motion – SfM: The early-days approach

$$W_{2F\times N} = M_{2F\times 3} \cdot S_{3\times N}$$

How can we solve for *M* and *S*? Answer: Exploit matrix Rank and Singular Value Decomposition

Matrix Rank and its properties:

<u>Column Rank</u>: The number of linearly independent columns of the matrix $\rightarrow ColumnRank(A_{m \times n}) \leq n$

<u>Row Rank</u>: The number of linearly independent rows of the matrix $\rightarrow RowRank(A_{m \times n}) \leq m$

$$ColumnRank(A_{m \times n}) = RowRank(A_{m \times n}) = Rank(A_{m \times n})$$
$$Rank(A_{m \times n}) \le \min(m, n)$$

 $W_{2F \times N}$: Observation Matrix $M_{2F \times 3}$: Camera Motion $S_{3 \times N}$: Scene Structure

- $Rank(A^T) = Rank(A)$
- $Rank(A_{m \times n}B_{n \times p}) =$ = $min(Rank(A_{m \times n}), Rank(B_{n \times p}))$ $\leq min(m, n, p)$

•
$$Rank(B_{m \times m}A_{m \times n}) = Rank(A_{m \times n}),$$

if B is full-Rank

Structure from Motion – SfM: The early-days approach

$$W_{2F\times N} = M_{2F\times 3} \cdot S_{3\times N}$$

 $W_{2F \times N}$: Observation Matrix $M_{2F \times 3}$: Camera Motion $S_{3 \times N}$: Scene Structure

Let's apply these Rank properties in our case:

 $Rank(W) = Rank(MS) \le \min(3, N, 2F)$

 $Rank(W) \leq 3$

Structure from Motion – SfM: The early-days approach

$$W_{2F\times N} = M_{2F\times 3} \cdot S_{3\times N}$$

One more step: Singular Value Decomposition (SVD)

For any matrix M, there exists a factorization:

$$\begin{split} M_{m\times n} &= U_{m\times m} \cdot \Sigma_{m\times n} \cdot V_{n\times n}^T \\ \text{where } U \text{ and } V^T \text{ are orthonormal and } \Sigma \text{ is diagonal.} \end{split}$$

$$\Sigma_{m \times n} = \begin{bmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \sigma_2 & \dots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & \dots & \sigma_n \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \end{bmatrix} \sigma_1, \dots, \sigma_n: \text{Singular Values}$$

$$\cdot \text{ Non-negative}$$

$$\cdot \text{ Descending order of importance} \text{ If } Rank(M)$$

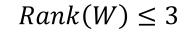
$$r \text{ non-zero}$$

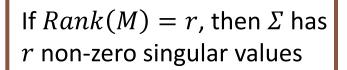
 $W_{2F \times N}$: Observation Matrix $M_{2F \times 3}$: Camera Motion $S_{3 \times N}$: Scene Structure $Rank(W) \leq 3$ U = r, then Σ has singular values

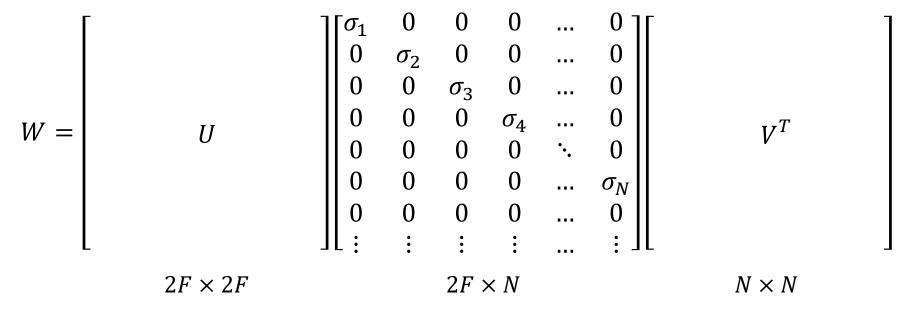
Structure from Motion – SfM: The early-days approach

$$\mathcal{N}_{2F\times N} = M_{2F\times 3} \cdot S_{3\times N}$$

 $W_{2F \times N}$: Observation Matrix $M_{2F \times 3}$: Camera Motion $S_{3 \times N}$: Scene Structure







Where $\sigma_1 \geq \sigma_2 \geq \sigma_3 \geq \cdots \geq \sigma_N$ are the singular values of W.

<u>Structure from Motion – SfM: The early-days approach</u>

$$\mathcal{N}_{2F\times N} = M_{2F\times 3} \cdot S_{3\times N}$$

 $W_{2F \times N}$: Observation Matrix $M_{2F \times 3}$: Camera Motion $S_{3 \times N}$: Scene Structure

 $W = \begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$

Using SVD: $W = U \cdot \Sigma \cdot V^T$

If Rank(M) = r, then Σ has r non-zero singular values

 $Rank(W) \le 3 \Rightarrow Rank(\Sigma) \le 3$

Structure from Motion – SfM: The early-days approach

$$\mathcal{N}_{2F\times N} = M_{2F\times 3} \cdot S_{3\times N}$$

 $W_{2F \times N}$: Observation Matrix $M_{2F \times 3}$: Camera Motion $S_{3 \times N}$: Scene Structure

$$Rank(W) \leq 3$$

If Rank(M) = r, then Σ has r non-zero singular values

Using SVD: $W = U \cdot \Sigma \cdot V^T$

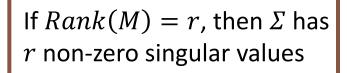
 $W = \begin{bmatrix} U \\ U \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & 0 & 0 & \dots & 0 \\ 0 & \sigma_2 & 0 & 0 & \dots & 0 \\ 0 & 0 & \sigma_3 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \dots & \vdots \end{bmatrix} \begin{bmatrix} V^T \\ V^T \\$

 $Rank(W) \leq 3 \Rightarrow Rank(\Sigma) \leq 3 \Rightarrow \sigma_4, \dots, \sigma_N = 0$

<u>Structure from Motion – SfM: The early-days approach</u>

$$\mathcal{N}_{2F\times N} = M_{2F\times 3} \cdot S_{3\times N}$$

 $W_{2F \times N}$: Observation Matrix $M_{2F \times 3}$: Camera Motion $S_{3 \times N}$: Scene Structure



Using SVD: $W = U \cdot \Sigma \cdot V^T$

W =

 $U \qquad \qquad \begin{bmatrix} \sigma_1 & 0 & 0 & 0 & \dots & 0 \\ 0 & \sigma_2 & 0 & 0 & \dots & 0 \\ 0 & 0 & \sigma_3 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 0 & \dots & \sim 0 \\ 0 & 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \dots & \vdots \end{bmatrix} \begin{bmatrix} V^T \\ V^T \\$

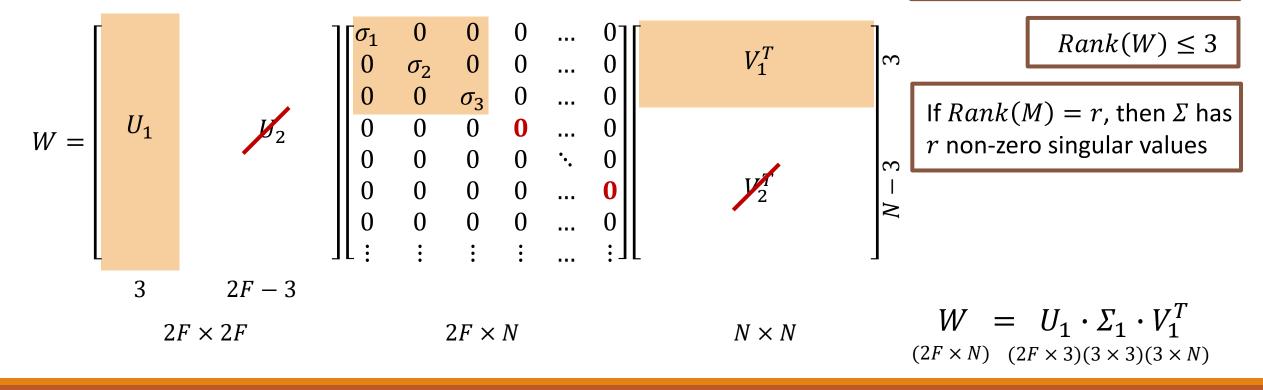
Yet, there is noise

 $Rank(W) \leq 3 \Rightarrow Rank(\Sigma) \leq 3 \Rightarrow \sigma_4, \dots, \sigma_N = 0$

$$W_{2F\times N} = M_{2F\times 3} \cdot S_{3\times N}$$

 $W_{2F \times N}$: Observation Matrix $M_{2F \times 3}$: Camera Motion $S_{3 \times N}$: Scene Structure

Using SVD: $W = U \cdot \Sigma \cdot V^T$



Structure from Motion – SfM: The early-days approach

$$W_{2F\times N} = M_{2F\times 3} \cdot S_{3\times N}$$

 $W_{2F \times N}$: Observation Matrix $M_{2F \times 3}$: Camera Motion $S_{3 \times N}$: Scene Structure

$$W = U_1 \cdot \Sigma_1 \cdot V_1^T \Rightarrow$$
$$W = U_1 \cdot \Sigma_1^{1/2} \cdot \Sigma_1^{1/2} \cdot V_1^T$$
$${}^{2F \times 3} \qquad 3 \times N$$
Is this *M*? Is this *S*?

Not necessarily! Factorization is not unique.

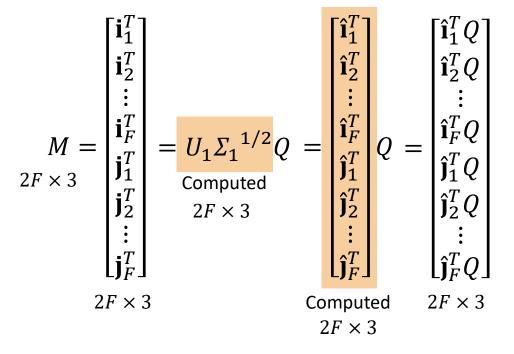
$$W = \begin{array}{c} U_1 \cdot \Sigma_1^{1/2} \cdot Q \\ & 2F \times 3 \\ & = M \end{array} \begin{array}{c} Q^{-1} \cdot \Sigma_1^{1/2} \cdot V_1^T \\ & 3 \times N \\ & = S \end{array}$$
 is also valid.
We need to find $Q_{3 \times 3}$ and we are finally done.

Structure from Motion – SfM: The early-days approach

$$W_{2F\times N} = M_{2F\times 3} \cdot S_{3\times N}$$

 $W_{2F \times N}$: Observation Matrix $M_{2F \times 3}$: Camera Motion $S_{3 \times N}$: Scene Structure

Exploit the structure of motion matrix *M*:



Orthonormality Constrains:

$$\mathbf{i}_{f} \cdot \mathbf{i}_{f} = \mathbf{i}_{f}^{T} \mathbf{i}_{f} = 1$$

$$\mathbf{j}_{f} \cdot \mathbf{j}_{f} = \mathbf{j}_{f}^{T} \mathbf{j}_{f} = 1$$

$$\mathbf{j}_{f}^{T} Q Q^{T} \hat{\mathbf{i}}_{f} = 1$$

$$\mathbf{j}_{f}^{T} Q Q^{T} \hat{\mathbf{j}}_{f} = 1$$

$$\mathbf{j}_{f}^{T} Q Q^{T} \hat{\mathbf{j}}_{f} = 1$$

$$\mathbf{i}_{f} \cdot \mathbf{j}_{f} = \mathbf{i}_{f}^{T} \mathbf{j}_{f} = 0$$

$$\mathbf{i}_{f}^{T} Q Q^{T} \hat{\mathbf{j}}_{f} = 0$$

Structure from Motion – SfM: The early-days approach

$$W_{2F\times N} = M_{2F\times 3} \cdot S_{3\times N}$$

 $W_{2F \times N}$: Observation Matrix $M_{2F \times 3}$: Camera Motion $S_{3 \times N}$: Scene Structure

We have computed $(\hat{\mathbf{i}}_{f}^{T}, \hat{\mathbf{j}}_{f})$ for frame f = 1, ..., F: $\hat{\mathbf{i}}_{f}^{T} Q Q^{T} \hat{\mathbf{i}}_{f} = 1$ $\hat{\mathbf{j}}_{f}^{T} Q Q^{T} \hat{\mathbf{j}}_{f} = 1$ $\hat{\mathbf{i}}_{f}^{T} Q Q^{T} \hat{\mathbf{j}}_{f} = 0$ Q is unknown.

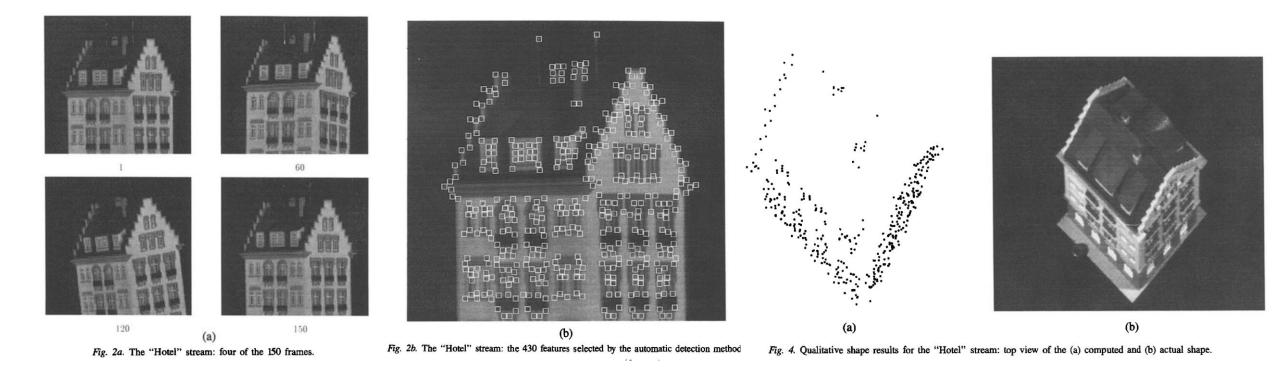
- Q is a 3 \times 3 matrix with 9 variables
- We have 3F equations that involve Q
- As long as we have 3 or more frames $(F \ge 3)$ this can be solved (e.g., with Newton's method)

Final solution:

$$M = U_1 \cdot \Sigma_1^{-1/2} \cdot Q$$

$$S = Q^{-1} \cdot \Sigma_1^{-1/2} \cdot V_1^T$$

<u>Structure from Motion – SfM: The early-days approach</u>



Carlo Tomasi, Takeo Kanade, Shape and Motion from Image Streams under Orthography: a Factorization Method International Journal of Computer Vision, IJCV, 1992, pages 137-154, Springer

<u>Structure from Motion – SfM: The early-days approach</u>

Carlo Tomasi, Takeo Kanade, Shape and Motion from Image Streams under Orthography: a Factorization Method International Journal of Computer Vision, IJCV, 1992, pages 137-154, Springer

SLAM:: The online and real-time version

Now, what's the issue with that? Why not to use such approaches in robotics applications?

- We cannot wait for all the frames to be captured
- Even then, we cannot expect to process all these frames in real-time