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Industry 4.0 and the Age of Mobile Robotics
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Industry 4.0 and the Age of Mobile Robotics
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Simultaneous Localization And Mapping

Provide the means for a mobile robot to
* map an unknown environment and
* identify its location within it

Today’s lecture in simple terms

* Evolution of Localization and Mapping
approaches

e Basic theory and methods

 Re-evaluation and correction of the
output
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Now, lets define some terms for this lecture

What is a mobile robot?
* Anautonomous machine equipped with
a motion system and a set of sensors

What is an unknown environment?
*  Our knowledge of the world’s structure is zero or
the environment is constantly changing

What is localization and mapping for a robot?

* Localization: Identify the robot’s pose within a specified environment
 Mapping: Measure the environment’s structure given the robot’s pose

* Chicken-or-egg problem: Simultaneous Localization and Mapping (SLAM)
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SLAM — Simultaneous Localization And Mapping

* |terative process
 Given your best knowledge about the environment,
measure your location
* Given your best localization estimate,
update your knowledge about the environment

* Means to perceive the world
* Noisy sensory inputs

* Inits core: Estimation theory
* Probabilistic Models
 Most recently: Deep Learning
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SLAM VS Deep Learning

« Typical SLAM focuses on geometric problems
« Deep Learning is the master of perception (recognition) problems

« |f you want a robot to go towards your refrigerator without hitting a
wall, use SLAM

« |If you want the robot to identify the items inside your fridge,
use Deep Learning

* Most institutes split their graduate level curriculums into:
 Learning-based Methods -> Deep Learning
e Geometry-Based Methods -> SLAM
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A video is worth a thousand words
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Perception systems: The means for obtaining information

What kind of sensors do we need?
e Robot’s state

 World’s geometry

Mimic the living

* Humans do not have 5 senses
 Atleast 9 according to neuroscience
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Perception systems: The means for obtaining information

Robot’s state

* Position:
* Absolute: e.g., Global Navigation Satellite System (GNSS)
* Relative: e.g., Wheel encoders

* [nertia:
* Acceleration: Accelerometers
* Orientation and Angular velocity: Gyroscopes
* Earth frame alignment: Magnetometers
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Perception systems: The means for obtaining information

World’s geometry
* Range-finders: Proximity
e Ultrasonic
 LIDAR
 Cameras: Appearance
* Monocular
* Stereo
e RGBD
* Infrared
 Time of flight
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The basics of SLAM: Taxonomy

Volumetric VS Feature-Based SLAM
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The basics of SLAM: Taxonomy

Topologic VS Geometric Maps
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The basics of SLAM: Taxonomy

Static VS Dynamic Environments
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The basics of SLAM: Taxonomy

Single-Robot VS Multi-Robot
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A common representation from SLAM (Graph SLAM)

Robot2

* Points are represented w.r.t
frames of reference placed on

each robot pose
POINT 2

* Robot poses are associated
POINT ¢ though their relative
transformations
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A common representation from SLAM (Graph SLAM)

Robot2
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Frames of reference:: what?

X
A frame of reference holds: / \

* Specific position

PR Y 7

7 K * Specific orientation ~_

* Specific axis arrangement

P *axb

‘a 7 ’
b \ /
Y 3

X
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Frames of reference:: why?

. Z K
Elements w/o dimensions (points):
P
e Definition of location:
X
K=1|v Y
Z

Elements w/ dimensions (objects):

* Definition of relative pose:

(1’T=[ iR P
0 0 0 1
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Frames of reference:: How?

Rotation Matrix: 2D
* Knowing the location of K w.r.t. frame 1:

[L and 0]

* Knowing the rotation of frame 1 w.r.t. frame 0:  [y]

* Find the location of K w.r.t. frame O

x, = L cos(0)
y, = L sin(0)

Xo = Xq * cf)s(y) — y1 - sin(y) o [*] _ [cos(y) —sin(y)]
Yo = X1 - sin(y) + y; - cos(y) Yol ~ Isin(y) cos(y) | |
o]
= _ 0
Yo 1R

9R: 2D Rotation matrix from
frame 1 to frame O
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Frames of reference:: How?

Rotation Matrix: 2D
e Rotation around Z

_ [cos(y) —sin(y)
1R = [sin(y) cos(y) ]

Rotation Matrix: 3D
e Rotation around Z

cos(y) -sin(y) O
| |

sin(y) cos(y) O

0 0 1
Xo cos(y) —sin(y) 0]]41
Z1=2Zy = |Yo|=|sin(y) cos(y) 0|V
Zo 0 0 11124
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Frames of reference:: How?

Similarly for the rest of the axes’ rotation.
* Rotation around Z

ARy, = [sin(a) cos(a) 0

cos(a) —sin(a) 0] z.
0 0 1

Rotation around X

B —
ARX -

1 0 0
0 cos(y) -—sin(y)

0 sin(y) cos(y) Rotation around all 3 axes

Rotation around Y
4R = Rz(a)Ry (B)Rx(¥)

cos(f) 0 sin(B)
BR, = 0 1 0

—sin(B) 0 cos(B)
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Frames of reference:: How?

Yl
Y, "
Translation Matrix P: 2D W K
Xo = X1 + Ax R Xo] _ lxll + [Ax]
Yo =Y1 +4y Yo yi| ' |Ay
Xl
Xo X1
[)’ 0] [)’ 1] +r Ay

'Ax " X
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Frames of reference:: How? oo
K
Translation Matrix P: 2D
x0] [xll [Ax] xo] [x1] X,
Translation Matrix P: 3D 2% "
A
X0 X1 Ax X0 X1 K
[3’0=3’1+Ay = 3’0]=}’1 + P Zy
Z Z1 Az Zo Z1 Y.
1
X1
Yo
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Frames of reference:: How?

Combining R and P — Transformation Matrix T

L
K
A
'K =9R'K+P ) Y1
=l :
0 1
o _ | 1R |P 0 0 0]1
Y loo o1 Yo
Xo

OKZOT 1K
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Frames of reference:: Kinematic Chain

* Gradual description of a point from one frame of reference to its previous one

Bk = Brk
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Frames of reference:: Kinematic Chain

* Gradual description of a point from one frame of reference to its previous one

Bk = Brk
/A3

AK = 8T PK
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Frames of reference:: Kinematic Chain

* Gradual description of a point from one frame of reference to its previous one

Bk = Brk

AK = 8T PK
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Frames of reference:: Kinematic Chain

* Gradual description of a point from one frame of reference to its previous one

AK = T T °K

&T = T gT
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Frames of reference:: Kinematic Chain

* Gradual description of a point from one frame of reference to its previous one

AT = 4T BT ST 2T
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Frames of reference:: Applications

Actuators: Every joint can be defined by a Transformation Matrix

Rotation around X axis with
negative rotation direction ll 0 0 ]
R =

0 cos(y) -—sin(y)
0 sin(y) cos(y)

10 0 0] T_[ R |P]

T = 0 cos(—0) -—sin(—0) 0 v oo of1
Revolute joint 0 sin(—60) cos(—60) 0
L0 0 0 1.
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Frames of reference:: Applications

Actuators: Every joint can be defined by a Transformation Matrix

7]

This way, the relative transformation between
the end-effector and the target can be
computed = Manipulation

Unknowns: T
K : B Bp S
nowns: 1, T, T

(G}
15) \
(8] —="

VU

Solution: T = [%T]_llgT(S;T




Localization and Mapping for Autonomous Mobile Systems

Frames of reference:: Applications

AGVs: Every robot movement can be defined by a Transformation Matrix

1 0 0
Rotation around Z axis with R =10 cos(y) =sin(y)
negative rotation direction 0 sin(y) cos(y)
and Translation on X and Y
1 0 0 Ax’
_— 0 cos(—0) —sin(—6) Ay v
|0 sin(—=8) cos(=0) 0 T = [ ]
K ) 0 . 0 0 O | 1
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Frames of reference:: Applications

AGVs: Every robot movement can be defined by a Transformation Matrix

This way, the observed points can
be projected to a common frame
of reference = Map
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Evolution of SLAM

A

Monocular RNy
(Single camera
instead of stereo)

Structure from

Motion
(typically off-line)

SLAM
(w/o cameras)

Visual-Inertial

SLAM
(Camera + IMU)

Visual SLAM

(Cameras as the
main sensor)

Localization or
Mapping
(treated separately) Ahzsas

Photogrametry
(expensive and
manual)

R feeeae

&L
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It all started with stereo-photogrammetry
d d'

_f__I__EE B /

Required: H, f, B

Measured: d, d’

Computed: b, h

Manual measurements: Mirror Stereoscope
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Structure from Motion — SfM

* Required: Multiple points
associations
among different
frames (automated)

Measured: d, d' (automated)

e Computed: T, b, h
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Structure from Motion — SfM

Falls into the “Shape from X" problem

Methods:

* Stereo

* Shading
 Photometric Stereo
* Texture

* Contours

* Silhouettes

* Motion
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SLAM and SfM

SLAM is using tools from SftM

e SfM is traditionally performed offline
* Recovery of 3D shape from 2D images
 Depending on the scale, reconstruction can take hours or days
* Itis typically performed on high-performance computers
* Google Maps and Google Street View were built using StM

 SLAM mostly refers to online applications
 Mapping and localization on-the-fly
* Real-time
 Low-power sensors (e.g., a single RGB camera and an IMU)
* Itistypically performed on-board using low-power processing units
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Structure from Motion — SfM

Falls into the “Shape from X" problem

Methods:

* Stereo

* Shading
 Photometric Stereo
* Texture

* Contours

* Silhouettes

* Motion
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Structure from Motion — SfM

Shape from X - Shape from Motion

e Humans are able to recover
3D from motion




