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Simultaneous Localization And Mapping

Provide the means for a mobile robot to
• map an unknown environment and
• identify its location within it

Today’s lecture in simple terms

• Evolution of Localization and Mapping 
approaches

• Basic theory and methods
• Re-evaluation and correction of the 

output
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Now, lets define some terms for this lecture

What is a mobile robot?
• An autonomous machine equipped with 

a motion system and a set of sensors

What is an unknown environment?
• Our knowledge of the world’s structure is zero or 

the environment is constantly changing

What is localization and mapping for a robot?
• Localization: Identify the robot’s pose within a specified environment
• Mapping: Measure the environment’s structure given the robot’s pose
• Chicken-or-egg problem: Simultaneous Localization and Mapping (SLAM)
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SLAM – Simultaneous Localization And Mapping

• Iterative process
• Given your best knowledge about the environment, 

measure your location
• Given your best localization estimate,

update your knowledge about the environment

• Means to perceive the world
• Noisy sensory inputs

• In its core: Estimation theory
• Probabilistic Models
• Most recently: Deep Learning
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SLAM VS Deep Learning

• Typical SLAM focuses on geometric problems

• Deep Learning is the master of perception (recognition) problems

• If you want a robot to go towards your refrigerator without hitting a 

wall, use SLAM

• If you want the robot to identify the items inside your fridge, 

use Deep Learning

• Most institutes split their graduate level curriculums into:
• Learning-based Methods -> Deep Learning
• Geometry-Based Methods -> SLAM
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A video is worth a thousand words
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Perception systems: The means for obtaining information

What kind of sensors do we need?

• Robot’s state
• World’s geometry

Mimic the living

• Humans do not have 5 senses
• At least 9 according to neuroscience
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Perception systems: The means for obtaining information

Robot’s state
• Position:

• Absolute: e.g., Global Navigation Satellite System (GNSS)
• Relative: e.g., Wheel encoders

• Inertia: 
• Acceleration: Accelerometers
• Orientation and Angular velocity: Gyroscopes
• Earth frame alignment: Magnetometers
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World’s geometry
• Range-finders: Proximity

• Ultrasonic
• LIDAR

• Cameras: Appearance
• Monocular
• Stereo
• RGBD

• Infrared
• Time of flight

Perception systems: The means for obtaining information
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The basics of SLAM: Taxonomy

Volumetric VS Feature-Based SLAM

Localization and Mapping for Autonomous Mobile Systems



Topologic VS Geometric Maps

The basics of SLAM: Taxonomy
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Static VS Dynamic Environments

The basics of SLAM: Taxonomy
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Single-Robot VS Multi-Robot

The basics of SLAM: Taxonomy
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A common representation from SLAM (Graph SLAM)
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• Points are represented w.r.t 
frames of reference placed on 
each robot pose

• Robot poses are associated 
though their relative 
transformations



A common representation from SLAM (Graph SLAM)
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Translation

Rotation, Translation



Frames of reference:: what?
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A frame of reference holds:
• Specific position
• Specific orientation
• Specific axis arrangement

𝑋

𝑌

𝑍 𝐾

𝑃

෠Χ

෡Υ ෠Ζ

෠𝛸 × ෠𝑌 = ෠𝛧



Frames of reference:: why?
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Elements w/o dimensions (points):

• Definition of location:

𝐾 =
𝛸
𝑌
𝛧

Elements w/ dimensions (objects):

• Definition of relative pose:

1
0𝛵 = 1

0𝑅 𝑃

0 0 0 1

𝑋

𝑌

𝑍 𝐾

𝑃

𝑋0

𝑌0

𝑍0



Frames of reference:: How?
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Rotation Matrix: 2D
• Knowing the location of 𝐾 w.r.t. frame 1: [𝐿 and 𝜃]
• Knowing the rotation of frame 1 w.r.t. frame 0:       [𝛾]
• Find the location of 𝐾 w.r.t. frame 0

𝐾

𝑥0 = 𝑥1 ⋅ cos( 𝛾) − 𝑦1 ⋅ sin( 𝛾)
𝑦0 = 𝑥1 ⋅ sin( 𝛾) + 𝑦1 ⋅ cos( 𝛾)

𝑥1 = 𝐿 cos(𝜃)
𝑦1 = 𝐿 𝑠𝑖𝑛(𝜃)

𝑥0
𝑦0

=
cos( 𝛾) − sin( 𝛾)
sin( 𝛾) cos( 𝛾)

⋅
𝑥1
𝑦1

⇒

⇒
𝑥0
𝑦0

= 1
0𝑅 ⋅

𝑥1
𝑦1 1

0𝑅: 2D Rotation matrix from 
frame 1 to frame 0



Frames of reference:: How?
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Rotation Matrix: 2D
• Rotation around 𝑍

Rotation Matrix: 3D
• Rotation around 𝑍

𝐾
1
0𝑅 =

cos(𝛾) −sin(𝛾)
sin(𝛾) cos(𝛾)

1
0𝑅 =

cos(𝛾) −sin(𝛾) 0
sin(𝛾) cos(𝛾) 0
0 0 1

𝑍1 = 𝑍0 →

𝑋0
𝑌0
𝑍0

=
cos(𝛾) −sin(𝛾) 0
sin(𝛾) cos(𝛾) 0
0 0 1

𝑋1
𝑌1
𝑍1



Frames of reference:: How?
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Similarly for the rest of the axes’ rotation.
• Rotation around 𝑍

• Rotation around 𝑋

• Rotation around 𝑌

𝛢
𝛣𝑅𝛧 =

𝑐𝑜𝑠(𝛼) −𝑠𝑖𝑛(𝛼) 0
𝑠𝑖𝑛(𝛼) 𝑐𝑜𝑠(𝛼) 0
0 0 1

𝛢
𝛣𝑅𝛸 =

1 0 0
0 𝑐𝑜𝑠(𝛾) −𝑠𝑖𝑛(𝛾)
0 𝑠𝑖𝑛(𝛾) 𝑐𝑜𝑠(𝛾)

𝛢
𝛣𝑅𝛶 =

𝑐𝑜𝑠(𝛽) 0 𝑠𝑖𝑛(𝛽)
0 1 0

−𝑠𝑖𝑛(𝛽) 0 𝑐𝑜𝑠(𝛽)

• Rotation around all 3 axes

𝛢
𝛣𝑅 = 𝑅𝑍(𝛼)𝑅𝛶(𝛽)𝑅𝛸(𝛾)



Frames of reference:: How?
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Translation Matrix 𝑃: 2D

𝑥0 = 𝑥1 + 𝛥𝑥
𝑦0 = 𝑦1 + 𝛥𝑦

𝑥0
𝑦0

=
𝑥1
𝑦1

+
Δ𝑥
Δ𝑦

⇒

𝑥0
𝑦0

=
𝑥1
𝑦1

+ 𝑃⇒

𝑋0

𝑌0

𝐾

𝑋1

𝑌1

𝛥𝑦

𝛥𝑥



Frames of reference:: How?
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Translation Matrix 𝑃: 2D

Translation Matrix 𝑃: 3D

𝑥0
𝑦0

=
𝑥1
𝑦1

+ 𝑃
𝑥0
𝑦0

=
𝑥1
𝑦1

+
𝛥𝑥
𝛥𝑦

⇒

𝑥0
𝑦0
𝑧0

=

𝑥1
𝑦1
𝑧1

+
𝛥𝑥
𝛥𝑦
𝛥𝑧

⇒

𝑥0
𝑦0
𝑧0

=

𝑥1
𝑦1
𝑧1

+ 𝑃



Frames of reference:: How?
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Combining 𝑅 and 𝑃 → Transformation Matrix 𝑇

0𝐾 = 1
0R 1𝐾 + 𝑃

1
0Τ = 1

0R 𝑃

0 0 0 1

0𝐾

1
= 1

0R 𝑃

0 0 0 1

1𝐾

1

0𝐾 = 1
0Τ 1𝐾

𝑋0

𝑌0

𝑍0

𝐾



Frames of reference:: Kinematic Chain
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• Gradual description of a point from one frame of reference to its previous one

𝑋Α

𝑌Α

𝑍Α
𝐾

B𝐾 = C
BΤ C𝐾



Frames of reference:: Kinematic Chain
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• Gradual description of a point from one frame of reference to its previous one

B𝐾 = C
BΤ C𝐾

𝑋Α

𝑌Α

𝑍Α

A𝐾 = B
AΤ B𝐾

𝐾



Frames of reference:: Kinematic Chain

Localization and Mapping for Autonomous Mobile Systems

• Gradual description of a point from one frame of reference to its previous one

B𝐾 = C
BΤ C𝐾

A𝐾 = B
AΤ B𝐾

𝑋Α

𝑌Α

𝑍Α
𝐾



Frames of reference:: Kinematic Chain
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• Gradual description of a point from one frame of reference to its previous one

B𝐾 = C
BΤ C𝐾

A𝐾 = B
AΤ B𝐾

𝑋Α

𝑌Α

𝑍Α
𝐾

A𝐾 = B
AΤ C

BΤ C𝐾

𝐶
AT = B

AΤ C
BΤ



Frames of reference:: Kinematic Chain
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• Gradual description of a point from one frame of reference to its previous one

𝑋Α

𝑌Α

𝑍Α

𝐸
AT = B

AΤ C
BΤ D

CΤ E
DΤ



Frames of reference:: Applications
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𝑋

Rotation around 𝛸 axis with 
negative rotation direction

𝛵 =

1 0 0
0 𝑐𝑜𝑠(−𝜃) −𝑠𝑖𝑛(−𝜃)
0 𝑠𝑖𝑛(−𝜃) 𝑐𝑜𝑠(−𝜃)

0
0
0

0 0 0 1

𝛵 =
𝑅 𝑃

0 0 0 1

𝑅 =

1 0 0
0 cos(𝛾) −sin(𝛾)
0 sin(𝛾) cos(𝛾)

𝜃

Revolute joint

Actuators: Every joint can be defined by a Transformation Matrix



Frames of reference:: Applications
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Actuators: Every joint can be defined by a Transformation Matrix

This way, the relative transformation between 
the end-effector and the target can be 
computed ⇒ Manipulation

Unknowns: G
TT

Knowns: T
BΤ, S

BΤ, G
SΤ

Solution: G
TT = T

BΤ
−1

S
BΤG

SΤ



Frames of reference:: Applications
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Rotation around 𝑍 axis with 
negative rotation direction 
and Translation on 𝑋 and 𝑌

𝛵 =

1 0 0
0 𝑐𝑜𝑠(−𝜃) −𝑠𝑖𝑛(−𝜃)
0 𝑠𝑖𝑛(−𝜃) 𝑐𝑜𝑠(−𝜃)

𝛥𝑥
𝛥𝑦
0

0 0 0 1
𝛵 =

𝑅 𝑃
0 0 0 1

𝑅 =

1 0 0
0 cos(𝛾) −sin(𝛾)
0 sin(𝛾) cos(𝛾)

AGVs: Every robot movement can be defined by a Transformation Matrix

𝛵 𝑃 =
𝛥𝑥
𝛥𝑦
0



Frames of reference:: Applications
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AGVs: Every robot movement can be defined by a Transformation Matrix

2
1𝛵

3
2𝛵

This way, the observed points can 
be projected to a common frame 
of reference ⇒ Map



Evolution of SLAM

SLAM
(w/o cameras)

Localization or 
Mapping

(treated separately)

Structure from 
Motion

(typically off-line)

Visual SLAM
(Cameras as the

main sensor)

Monocular 
SLAM

(Single camera 
instead of stereo)

Visual-Inertial 
SLAM

(Camera + IMU)
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Photogrametry
(expensive and 

manual)



It all started with stereo-photogrammetry
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𝐵𝑓

𝐻

𝑑′𝑑

𝑏

ℎ

• Required: 𝐻, 𝑓, 𝐵

• Measured: 𝑑, 𝑑′

• Computed: 𝑏, ℎ

Manual measurements: Mirror Stereoscope



Structure from Motion – SfM
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𝑏

ℎ

• Required: Multiple points 
associations
among different 
frames (automated)

• Measured: 𝑑, 𝑑′ (automated)

• Computed: 𝑇, 𝑏, ℎ

𝑑′𝑑 𝑇



Falls into the “Shape from X” problem

Methods:

• Stereo

• Shading

• Photometric Stereo

• Texture

• Contours

• Silhouettes

• Motion

Structure from Motion – SfM
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SLAM is using tools from SfM

• SfM is traditionally performed offline
• Recovery of 3D shape from 2D images
• Depending on the scale, reconstruction can take hours or days
• It is typically performed on high-performance computers
• Google Maps and Google Street View were built using SfM

• SLAM mostly refers to online applications
• Mapping and localization on-the-fly
• Real-time
• Low-power sensors (e.g., a single RGB camera and an IMU)

• It is typically performed on-board using low-power processing units

SLAM and SfM
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Falls into the “Shape from X” problem

Methods:

• Stereo

• Shading

• Photometric Stereo

• Texture

• Contours

• Silhouettes

• Motion

Structure from Motion – SfM
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Shape from X - Shape from Motion

• Humans are able to recover 
3D from motion

Structure from Motion – SfM
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