## **Robust Mechatronics**

UAVs as Mechatronic Systems: Design and Applications



#### Dr Loukas Bampis, Assistant Professor Mechatronics & Systems Automation Lab

#### **Basics of mechatronic systems**

- Mechanical elements
  - System components and components requiring control
- Sensors
  - Perception of the state of mechanisms and environment
- Actuators
  - Movement and control of mechanisms
- Digital Computing Systems
  - Implementation of reasoning actions

#### **Basics of Mechatronic Systems**



## A Simple Example of a Mechatronic System

Digital camera with autofocus



#### **Unmanned Aerial Vehicles**





#### **Unmanned Aerial Vehicles Design**



#### Control station design

- Operator interaction with the aircraft
- Exchange of information and command





#### **Unmanned Aerial Vehicles Design**



# Aircraft design Aircraft platform selection Aerodynamic study Material strength study Propulsion system study









# Unmanned Aerial Vehicles Designan Laser Range Finder









## UAVs' subsystem analysis

Control station design

## UAVs' subsystem analysis

Control station design

#### Capabilities:

- Remote control
  - Direct manual control aircraft remotely



## UAVs' subsystem analysis

Control station design

#### Capabilities:

- Remote control
  - Direct manual control aircraft remotely
- Telemetry
  - Receiving mission data
  - Publishing waypoints
  - Publishing commands (e.g., landing, target tracking)



## UAVs' subsystem analysis

Control station design

#### Capabilities:

- Remote control
  - Direct manual control aircraft remotely
- Telemetry
  - Receiving mission data
  - Publishing waypoints
  - Publishing commands (e.g., landing, target tracking)
- Video stream
  - Ground surveillance
  - First Person View





## UAVs' subsystem analysis

Aircraft design

| Fixed Wing                                   |  | Rotary-wing  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hybrid                                                |     |
|----------------------------------------------|--|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----|
| Low Endurance                                |  | Single-rotor | FF X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fixed-wing VTOL<br>(Vertical Take-Off<br>and Landing) | 125 |
| Medium Altitude-<br>Long Endurance<br>(MALE) |  | Mulitirotor  | - John                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tilt wing                                             | A A |
| High Altitude-<br>Long Endurance<br>(HALE)   |  | Coax copters | The second secon | Tilt engine                                           |     |

# UAVs' subsystem analysis

Aircraft design

| Fixed Wing                                                                  | Rotary-wing                                | Hybrid                                                                                  |
|-----------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------|
| Horizontal Take-Off and Landing (HTOL)<br>Short Take-Off and Landing (STOL) | Vertical Take-Off and Landing (VTOL)       | <ul> <li>Vertical Take-Off and Landing<br/>(VTOL)</li> <li>Horizontal flight</li> </ul> |
| Increased take-off/landing requirements                                     | Reduced take-off/landing requirements      | Reduced take-off/landing requirements                                                   |
| Reduced energy consumption during flight                                    | Increased energy consumption during flight | Reduced energy consumption during flight                                                |







## **UAVs' subsystem analysis** Aircraft design



## UAVs' subsystem analysis

Perception system design

## UAVs' subsystem analysis

Perception system design

Available sensors IMU, GNSS, Distance, Cameras

• Localization



## UAVs' subsystem analysis

#### Perception system design

Available sensors IMU, GNSS, Distance, Cameras

- Localization
- Mapping







## UAVs' subsystem analysis

#### Perception system design

Available sensors IMU, GNSS, Distance, Cameras

- Localization
- Mapping
- Obstacle detection





## UAVs' subsystem analysis

#### Perception system design

Available sensors IMU, GNSS, Distance, Cameras

- Localization
- Mapping
- Obstacle detection
- Target tacking



UAVs' subsystem analysis

Motion and control system design

Aircraft design data

• Kinematic model and aircraft dynamics



 $F_{i} = K_{f} \times \omega_{i}^{2}$   $M_{i} = K_{m} \times \omega_{i}^{2}$   $M_{y} = (F_{1} - F_{2}) \times L$   $M_{x} = (F_{3} - F_{4}) \times L$   $m\ddot{r} = F_{1} + F_{2} + F_{3} + F_{4}$   $I_{zz} \times \ddot{\psi} = M_{1} + M_{2} + M_{3} + M_{4}$   $I_{yy} \times \ddot{\theta} = F_{1} - F_{2} \times L$   $I_{xx} \times \ddot{\varphi} = F_{3} - F_{4} \times L$ 

## UAVs' subsystem analysis

Motion and control system design

Aircraft design data

• Kinematic model and aircraft dynamics

Waypoints data

- Path planning
  - Global path planning Computing the whole trajectory
  - Local path planning Computing next movement

Shortest trajectory not plausible

Local path planning

**Global path planning** 

## UAVs' subsystem analysis

Motion and control system design

Aircraft design data

• Kinematic model and aircraft dynamics

#### Waypoints data

- Path planning
  - Global path planning Computing the whole trajectory
  - Local path planning Computing next movement
- Trajectory data or user control commands
- Motor control



## **UAVs' Applications**

The MPU system



## **UAVs' Applications**

#### The MPU system





| Τελικά Χαρακτηριστικά MPU     |                        |  |  |  |
|-------------------------------|------------------------|--|--|--|
| Maximum Take-Off Weight (MTOW | 4.5 kg                 |  |  |  |
| Payload                       | 0.5 kg                 |  |  |  |
| Wingspan                      | 1.8 m                  |  |  |  |
| Wing Loading (W/S)            | 6.15 kg/m <sup>2</sup> |  |  |  |
| Cruise speed                  | 65 km/h                |  |  |  |
| Maximum speed                 | 125 km/h               |  |  |  |
| Stall speed                   | 25 km/h                |  |  |  |
| Endurance                     | 120 min                |  |  |  |
| Flight altitude               | 1500 m                 |  |  |  |



## **UAVs' Applications**

The MPU system



## **UAVs' Applications** The MIDRES system







# **UAVs' Applications**

## The MIDRES system



## **UAVs' Applications** The MIDRES system





# UAVs' Applications The MIDRES system





# **UAV Applications**

#### The Estia system





# **UAVs' Applications**

#### The Estia system



# **UAVs' Applications**

The Estia system





## **UAVs' Applications**





## **UAVs' Applications**



## **UAVs' Applications**



## **UAVs' Applications**



