QE12. Measurement Theory

* Principles of Quantum Measurements

Dr Panagiotis Dimitrakis

Lesson #3
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In maths...

To define that representation we need a further class of operators: projection operators or
projectors for short. The projector P, onto the eigenstate |a;> is defined by

P, = |a;){a;
Application of P; to an arbitrary state |y,> yields a multiple of |a,>
Pi|¢) = |ai){aily) = (aifeh)|as)
where |<a;|y>| the “length” of the projection of [y,> onto the unit vector |a;>. And if <a,la;> =0
then P,P; = 4;;P;; especially P? =P,

As the P; cover “all directions” of Hilbert space we obtain a completeness relation:

d d
Z.Pi = Z ai){a;||=1

i

i—1 i=1 : .
. . + Trace of a matrix A : Tr(A) the sum of the diagonal elements
P;1s Hermitian: P; = P;
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Projection postulate

Assume a quantum system prepared in a state |y> and a single measurement of the observable A is
performed. This cycle of preparation and measurement is repeated many times so that the notion
of probability used in the postulate makes sense.

Or imagine an ensemble containing a large number of independent copies of the quantum system,
all prepared in the same state |y>. A is measured for all system copies independently.

Projection postulate : A single measurement of the observable A in the normalized state |y> yields
one of the eigenvalues a; of A with probability |[<a;|y>|? . Immediately after the measurement the
system is in the (normalized) state

P; [)
[1P; [ W)

where P, is the projection operator onto the subspace of eigenstates of A with eigenvalue q;.
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Projective measurement result

In general it is not possible to predict the outcome of a single measurement. A measurement of A
on an ensemble of systems as discussed above yields the average (expectation value)

(A): = (P|AlY)

with deviations described by the variance (the square of the standard deviation): ((A - (A))Q) >0

The probability of obtaining outcome i for a given state |y>
pi= <y|P;ly>
And the post-measurement state is given by

|¢post>= P ly>
i
\/< w|Pi|y>

In quantum mechanics the measurement change the state of a quantum system which is
probabilistic and irreversible process. The observation process is irreversible.
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Projectors: a methodology for a single qubit

. Identify the projectors for the basis: P, = |v}{u]
. Compute each projected vector: Pp) = P.lY)

. Compute the squared magnitude of each projection: as
the probability of seeing the i-th normalized 'tbP.)
projection.

2

. Compute each normalized projection (each potential B YPp)
outcome): ¥N) = I

P)

This gives us each possible outcome and its associated probability:

Outcome |¢)y,) occurs with probability ||4p)[*
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Example 1:

Suppose we measure the state |0> in the basis {|+>, |->}.
|0>=1/V2 (|+>+ |->)

Step 1: Identify the projectors for the basis.

P, = [+)(+]|
P = |-)}-|
Step 2: Compute each projected vector:
1
PO = [0 = [0+ (5l +
1
P10 = |10 = -1 (g5l +
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Example 1:

Step 3: Compute the squared magnitude of each projection:

P 0} = %H)z = <%(+I %l+)> - %
Step 4: Compute each normalized projection (each potential outcome):
= - %l-) o
) )

. . 1
outcome |4) occurs with probability 3
This gives us possible outcomes and their associated probabilities: _ .1
outcome |—) occurs with probability 3
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Example: two-qubits states

1 1
Consider the two-qubit state  |¢) = EIOI) + EIIO)

And suppose we use the two-qubit standard basis for two-qubit measurement: 00}, [01), |10}, [11)

Step 1: Identify the measurement basis projectors:

Py = 100){00| For 2 qubits in the standard
Py = [01){01] basis, the shorthand is:
Py = llO)(lO} 0 — 100

Py = [1)11] ) @10 =100

0)®[1) = |o1)
1) ® 10)
H®[1) = |11)

et
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Example: two-qubits states

Step 2: Use the above to compute projected vectors: Step 3: The magnitudes of (non-zero)
rojected vectors are their probabilities:
P ) = 100)(00) (—101> f|10>) = 0 P P
1
P, = |01)(01 { —|01) +—10 = =01 2
w9 = oo (gion) + —10)) = 5o oo - | Lonf
1 1 1 ot 2 2
P = [10)(10| { —|01) 4+ — 10 = —|10
o) = | z(ﬂ o) = =10 T
2
Py ) 11) 11;( _ _ 110>) 0 Polbl = 1FZ0 = 3
e — +— fr—

. 7z V2

P l$) = o
Step 4: Normalize the projections to get the outcome vectors: Py |1,(;)| Fo B

1

10
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Tip for calculations

Notice the usefulness of Dirac notation, over matrices, in the second step, for example:

101)(01] iz|01) + —|1o>)

|
Llonjory on]+ = jonfor |10>)
N v
/ /

Scalar movement

- IOI) inner-product = 1 inner-product = 0

V2
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Example #3

Suppose you have a 2-qubit state and we want to Measure first qubit

measure only the first qubit. The input two-qubit 10) _,/7<_,

vectoris ) = |0)® (a0) +511)) ) S ") =2
After measuring only the first qubit, what are the a|0)+p|1) >

possible states, and with what probabilities?

Solution:

Clearly, since the first (top) qubit is already |0>, measuring this qubit alone should leave the top qubit as |0>.
Intuition suggests that because there's no entanglement, the second qubit should be the same. That is, after
measurement, that state should be

W) = 0)®(al0)+8]1)) or ) = a(l0)®]0))+B(10)®|1)) = «l00)+ 3|01)

et
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Projective measurement: extending the
theory to multiple qubits

We want to extend the theory to be able to handle different measurement scenarios with qubits.

Examples of scenarios include:

Measuring all qubits simultaneously.

Measuring just one qubit amongst the qubits.

Measuring a subset of qubits from the qubits.

And each case, having the freedom to use a variety of measurement bases.

There are three aspects to extending single-qubit projective measurement to multiple qubits:
Understanding how the particular measurement splits the whole -qubit space into orthogonal subspaces.
Building -qubit projectors accordingly.

Seeing if it helps to construct the -qubit projectors from smaller projectors (such as 1-qubit projectors).
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Measure first qubit in S-basis

— A

S What are outcomes and
their probabilities?

[$)=a|00) + B[ 01) +y|10) + 5[ 11)

Y

P) = a|00) 4+ 8|01) 4+ ~4/10) +4|11)

We want to measure the one qubit.

We will go about addressing this question in several stages:

* We'll first examine the potential vectors that result from subjecting the 2-qubit vector
to 1-qubit measurement.

* These potential vectors will form a vector space.

* Then, we'll build the projectors for these spaces.

 We'll also see that the projectors can be built from tensoring.
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Stage 1: if you measure the first qubit, what are the possible 2-qubit vectors that result?
Example: first qubit results in |0>.

Second qubit could potentially be any state.
Describe this as the space

Vi = span{|00),|01) }

Any vector in this space has the first qubit as |0> .

Similarly, the space of 2-qubit vectors that correspond to "first qubit is |1>" is

Va = span{|10),|11) }
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Stage 2: Thus, the potential results of first-qubit measurement lie in two orthogonal subspaces:
V = iuW

where

Vi = span{|00),|01) }
V2 = spa.n{ IlO) ’ Ill) } First qubit |1)

First qubit |0)

Stage 3: Now define projectors for each of these subspaces

ey
I

00) (ml@ 01)(01]

Py, = [10)(10]\- [11)(11]
ety
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Note: applying in Dirac formm makes it easy to see why these are projectors for those subspaces:
© Consider any vector

¥) = a|00) + B|01) +[10) +4]11)

© Then

Py, |4) projection of |/) on V3

(100){00] +[01){01] ) (e |00) + B101) + [10) + &[11) )
a|00) + 3101)

= A vectorin |

Recall: V; = span{|00), |01)}
© Similarly,

Py, ) = projection of |¢) on V,
v 110) + §|11)
A vector in V,

The outcomes of measurement and their probabilities are

normalized Py, |¢)) occurs with probability | P, )2
normalized Py, |1) occurs with probability | Py, |1’
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© Squared magnitudes of the projections are:

= la*+B’

Py, [9)[?
Py, [¥)?

© Normalized projections are:

P w1 =

P ) =

Py, |4)]

(3as
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= (r10) + $11)
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Let's take a closer look at the first projected vector to see that it makes sense:
© Recall we started in state

¥) = al00) + B8|01) ++[10) +46|11)
o Let's write this as

¥) = 0)@(@l0)+8]1)) + | (y|0)+4d]1))

Here, we've just separated out the first qubit for emphasis.

o If we measure the first qubit as |0), then the second should be "untouched" in state & |0) + 31).
© And the resulting 2-qubit vector should be
0)® (a|0) +8[1)) = «al00)+ 3|01
© But the latter is not normalized, and so, the normalized vector is:
1
——(a[00) + B/01))
\ el + 8]
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Can the 2-qubit projectors be built out of
smaller 1-qubit projectors?

Recall that the two 1-qubit S-basis projectors are

Py,
P

10){0]
{1

Since we're not measuring the 2nd-qubit, the only projector that keeps the qubit the same is the identity

I = [0){0] + |1)(1]
(in Dirac form).

Thus, one can construct the 2-qubit projectors via tensoring

Py, = Rl = [0)(0/®(|0){0]+1)(1])
P, = A®l = [1){1®(|0)(0]+1)(1])
STl ] [ MSCHEUANTLN. ey
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Let's work out the first one to see the details:

I’o ® I = |0> (0' ® ( |0>(0| + Il)(l' ) Tensor of projectors
= (10)(0] ®|0){0]) + (10){0] ® [1)(1]) Tensor properties
== ( |O ® 0) (0 ® OI ) + ( |0 ® 1)(0 ® ].I ) Proposition 4.5
- |00) (00' + |01)<01| Shorthand notation
Please prove that:
) (v ® lw)(w] = lv@w)(v® w|
s oy pomeencr, MscinquanTum )
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Finally, let's remind ourselves of alternative tensoring notation:
o We can write

v @ lw){w| = [v)|w) (v|(w] ( Also written as |v, w) (v, w|)
© Thus, we could also have written the earlier projector example as:

Pl = [0)(0]® (|0){0]+ [1)(1])
(10)(0] 10){01) + (10){0] ® [1)(1])

(10)10) (0| {0l) + (10) 1) (0] (1])
= |00)(00] + |01){01|

© By convention, we do not write |00) as |0, 0).
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Homework

Consider the single-qubit projectors P, = |4 )(+| and P. = |—~){—]|.

1. Show that (P, ® I)|00) = =x|+,0) and (P, ® I) [11) = |+, 1)
2. Show that —=|+,0) + —|+,1) = |+, +)

3. Expand (P, ® I) intoarnatrix and use that to show (P, ® I) |¢) = |+, +) (normalized) where |¢)) = 00) + |11))

2
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End of Lesson
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