QE12. Measurement Theory

- Principles of Quantum Measurements

Dr Panagiotis Dimitrakis
Lesson \#3 TECNNOLOGIES

In maths...

To define that representation we need a further class of operators: projection operators or projectors for short. The projector \mathbf{P}, onto the eigenstate $\left|a_{i}\right\rangle$ is defined by

$$
\mathbf{P}_{i}:=\left|a_{i}\right\rangle\left\langle a_{i}\right|
$$

Application of \mathbf{P}_{i} to an arbitrary state $\mid \psi_{i}>$ yields a multiple of $\left|a_{i}\right\rangle$

$$
\mathbf{P}_{i}|\psi\rangle=\left|a_{i}\right\rangle\left\langle a_{i} \mid \psi\right\rangle=\left\langle a_{i} \mid \psi\right\rangle\left|a_{i}\right\rangle
$$

where $\left.\left|<a_{i}\right| \psi\right\rangle \mid$ the "length" of the projection of $\left|\psi_{i}\right\rangle$ onto the unit vector $\left|a_{i}\right\rangle$. And if $<a_{i}\left|a_{j}\right\rangle=\delta_{i j}$ then

$$
\mathbf{P}_{i} \mathbf{P}_{j}=\delta_{i j} \mathbf{P}_{j} ; \text { especially } \mathbf{P}_{i}^{2}=\mathbf{P}_{i}
$$

As the \mathbf{P}_{i} cover "all directions" of Hilbert space we obtain a completeness relation:
\mathbf{P}_{i} is Hermitian: $\mathbf{P}_{i}=\mathbf{P}_{i}{ }^{\dagger}$

$$
\sum_{i=1}^{d} \mathbf{P}_{i}=\sum_{i=1}^{d}\left|a_{i}\right\rangle\left\langle a_{i}\right|=\mathbf{1}
$$

Trace of a matrix $A: \operatorname{Tr}(\mathrm{A})$ the sum of the diagonal elements

Projection postulate

Assume a quantum system prepared in a state $\mid \psi>$ and a single measurement of the observable \mathbf{A} is performed. This cycle of preparation and measurement is repeated many times so that the notion of probability used in the postulate makes sense.
Or imagine an ensemble containing a large number of independent copies of the quantum system, all prepared in the same state $\mid \psi>$. A is measured for all system copies independently.

Projection postulate: A single measurement of the observable \mathbf{A} in the normalized state $|\psi\rangle$ yields one of the eigenvalues a_{i} of \mathbf{A} with probability $\left|\left\langle a_{i} \mid \psi\right\rangle\right|^{2}$. Immediately after the measurement the system is in the (normalized) state

$$
\frac{\mathbf{P}_{i}|\psi\rangle}{\| \mathbf{P}_{i}|\psi\rangle \|}
$$

where \mathbf{P}_{i} is the projection operator onto the subspace of eigenstates of \mathbf{A} with eigenvalue a_{i}.

Projective measurement result

In general it is not possible to predict the outcome of a single measurement. A measurement of \mathbf{A} on an ensemble of systems as discussed above yields the average (expectation value)

$$
\langle\mathbf{A}\rangle:=\langle\psi| \mathbf{A}|\psi\rangle
$$

with deviations described by the variance (the square of the standard deviation): $\left\langle(\mathbf{A}-\langle\mathbf{A}\rangle)^{2}\right\rangle \geq 0$
The probability of obtaining outcome i for a given state $|\psi\rangle$

$$
\mathrm{p}_{\mathrm{i}}=\langle\psi| \mathbf{P}_{i}|\psi\rangle
$$

And the post-measurement state is given by

$$
\left|\psi_{i}^{\text {post }}\right\rangle=\frac{\mathbf{P}_{i}|\psi\rangle}{\sqrt{\langle\psi| \mathbf{P}_{i}|\psi\rangle}}
$$

In quantum mechanics the measurement change the state of a quantum system which is probabilistic and irreversible process. The observation process is irreversible.

Projectors: a methodology for a single qubit

1. Identify the projectors for the basis:

$$
\begin{aligned}
& P_{i}=\left|v_{i}\right\rangle\left\langle v_{i}\right| \\
& \left|\psi_{P_{i}}\right\rangle=P_{i}|\psi\rangle
\end{aligned}
$$

2. Compute each projected vector:
3. Compute the squared magnitude of each projection: as the probability of seeing the i-th normalized

$$
\left|\left|\psi_{P_{\mathrm{i}}}\right\rangle\right|^{2}
$$ projection.

4. Compute each normalized projection (each potential outcome):

$$
\left|\psi_{N_{i}}\right\rangle=\frac{\left|\psi_{\left.P_{P^{\prime}}\right\rangle}\right\rangle}{\left.\| \psi_{P_{i}}\right\rangle}
$$

This gives us each possible outcome and its associated probability:
Outcome $\left|\psi_{N_{i}}\right\rangle$ occurs with probability $\left.\| \psi_{P_{i}}\right\rangle\left.\right|^{2}$

Example 1:

Suppose we measure the state $\mid 0>$ in the basis $\{|+>|-,>\}$.
$\mid 0>=1 / \sqrt{ } 2(|+>+|->)$
Step 1: Identify the projectors for the basis.

$$
\begin{aligned}
& P_{+}=|+\rangle\langle+| \\
& P_{-}=|-\rangle\langle-|
\end{aligned}
$$

Step 2: Compute each projected vector:

$$
\begin{aligned}
& P_{+}|0\rangle=|+\rangle\langle+||0\rangle=|+\rangle\langle+|\left(\frac{1}{\sqrt{2}}|+\rangle+\frac{1}{\sqrt{2}}|-\rangle\right)=\frac{1}{\sqrt{2}}|+\rangle \\
& P_{-}|0\rangle=|-\rangle\langle-||0\rangle=|-\rangle\langle-|\left(\frac{1}{\sqrt{2}}|+\rangle+\frac{1}{\sqrt{2}}|-\rangle\right)=\frac{1}{\sqrt{2}}|-\rangle
\end{aligned}
$$

Example 1:

Step 3: Compute the squared magnitude of each projection:

$$
\begin{aligned}
& \left.\left.\left.\left|P_{+}\right| 0\right\rangle\left.\right|^{2}=\left|\frac{1}{\sqrt{2}}\right|+\right\rangle\left.\right|^{2}=\left\langle\frac{1}{\sqrt{2}}\langle+|\right| \frac{1}{\sqrt{2}}|+\rangle\right\rangle=\frac{1}{2} \\
& \left.\left.\left.\left|P_{-}\right| 0\right\rangle\left.\right|^{2}=\left|\frac{1}{\sqrt{2}}\right|-\right\rangle\left.\right|^{2}=\left\langle\frac{1}{\sqrt{2}}\langle-|\right| \frac{1}{\sqrt{2}}|-\rangle\right\rangle=\frac{1}{2}
\end{aligned}
$$

Step 4: Compute each normalized projection (each potential outcome):

$$
\frac{\frac{1}{\sqrt{2}}|+\rangle}{\left.\left|\frac{1}{\sqrt{2}}\right|+\right\rangle \mid}=|+\rangle \quad \frac{\frac{1}{\sqrt{2}}|-\rangle}{\left.\left|\frac{1}{\sqrt{2}}\right|-\right\rangle \mid}=|-\rangle
$$

This gives us possible outcomes and their associated probabilities:

> outcome $|+\rangle$ occurs with probability $\frac{1}{2}$ outcome $|-\rangle$ occurs with probability $\frac{1}{2}$

NATIONAL CENTRE FOR SCIENTIFIC RESEARCH "DEMOKRITOS"

Example: two-qubits states

Consider the two-qubit state $\quad|\psi\rangle=\frac{1}{\sqrt{2}}|01\rangle+\frac{1}{\sqrt{2}}|10\rangle$
And suppose we use the two-qubit standard basis for two-qubit measurement: $|00\rangle, \quad|01\rangle, \quad|10\rangle, \quad|11\rangle$
Step 1: Identify the measurement basis projectors:

$$
\begin{aligned}
& P_{00}=|00\rangle\langle 00| \\
& P_{01}=|01\rangle\langle 01| \\
& P_{10}=|10\rangle\langle 10| \\
& P_{11}=|11\rangle\langle 11|
\end{aligned}
$$

For 2 qubits in the standard basis, the shorthand is:
$|0\rangle \otimes|0\rangle=|00\rangle$
$|0\rangle \otimes|1\rangle=|01\rangle$
$|1\rangle \otimes|0\rangle=|10\rangle$
$|1\rangle \otimes|1\rangle=|11\rangle$

Example: two-qubits states

Step 2: Use the above to compute projected vectors:

$$
\begin{aligned}
& P_{00}|\psi\rangle=|00\rangle\langle 00|\left(\frac{1}{\sqrt{2}}|01\rangle+\frac{1}{\sqrt{2}}|10\rangle\right)=0 \\
& P_{01}|\psi\rangle=|01\rangle\langle 01|\left(\frac{1}{\sqrt{2}}|01\rangle+\frac{1}{\sqrt{2}}|10\rangle\right)=\frac{1}{\sqrt{2}}|01\rangle \\
& P_{10}|\psi\rangle=|10\rangle\langle 10|\left(\frac{1}{\sqrt{2}}|01\rangle+\frac{1}{\sqrt{2}}|10\rangle\right)=\frac{1}{\sqrt{2}}|10\rangle \\
& P_{11}|\psi\rangle=|11\rangle\langle 11|\left(\frac{1}{\sqrt{2}}|01\rangle+\frac{1}{\sqrt{2}}|10\rangle\right)=0
\end{aligned}
$$

Step 3: The magnitudes of (non-zero) projected vectors are their probabilities:

$$
\begin{aligned}
& \left.\left.\left|P_{01}\right| \psi\right\rangle\left.\right|^{2}=\left|\frac{1}{\sqrt{2}}\right| 01\right\rangle\left.\right|^{2}=\frac{1}{2} \\
& \left.\left.\left|P_{10}\right| \psi\right\rangle\left.\right|^{2}=\left|\frac{1}{\sqrt{2}}\right| 10\right\rangle\left.\right|^{2}=\frac{1}{2}
\end{aligned}
$$

Step 4: Normalize the projections to get the outcome vectors: $\quad \frac{1}{\left.\left|P_{01}\right| \psi\right\rangle \mid} P_{01}|\psi\rangle=|01\rangle$

$$
\frac{1}{\left.\left|P_{10}\right| \psi\right\rangle \mid} P_{10}|\psi\rangle=|10\rangle
$$

Tip for calculations

Notice the usefulness of Dirac notation, over matrices, in the second step, for example:

$$
\begin{aligned}
&|01\rangle\langle 01|\left(\frac{1}{\sqrt{2}}|01\rangle+\frac{1}{\sqrt{2}}|10\rangle\right) \\
&=\left(\frac{1}{\sqrt{2}}|01\rangle\langle 01||01\rangle+\frac{1}{\sqrt{2}}|01\rangle\langle 01||10\rangle\right) \\
& \text { Scalar movement } \\
&=\frac{1}{\sqrt{2}}|01\rangle{ }_{\text {inner-product }=1} \quad \text { inner-product }=0
\end{aligned}
$$

Example \#3

Suppose you have a 2-qubit state and we want to measure only the first qubit. The input two-qubit vector is $|\psi\rangle=|0\rangle \otimes(\alpha|0\rangle+\beta|1\rangle)$

After measuring only the first qubit, what are the
 possible states, and with what probabilities?

Solution:

Clearly, since the first (top) qubit is already $|0\rangle$, measuring this qubit alone should leave the top qubit as $|0\rangle$. Intuition suggests that because there's no entanglement, the second qubit should be the same. That is, after measurement, that state should be

$$
\left|\psi^{\prime}\right\rangle=|0\rangle \otimes(\alpha|0\rangle+\beta|1\rangle) \quad \text { Or } \quad\left|\psi^{\prime}\right\rangle=\alpha(|0\rangle \otimes|0\rangle)+\beta(|0\rangle \otimes|1\rangle)=\alpha|00\rangle+\beta|01\rangle
$$

Projective measurement: extending the theory to multiple qubits

We want to extend the theory to be able to handle different measurement scenarios with qubits.
Examples of scenarios include:

- Measuring all qubits simultaneously.
- Measuring just one qubit amongst the qubits.
- Measuring a subset of qubits from the qubits.
- And each case, having the freedom to use a variety of measurement bases.
- There are three aspects to extending single-qubit projective measurement to multiple qubits:
- Understanding how the particular measurement splits the whole -qubit space into orthogonal subspaces.
- Building -qubit projectors accordingly.
- Seeing if it helps to construct the -qubit projectors from smaller projectors (such as 1-qubit projectors).

$$
\begin{aligned}
& |\psi\rangle=\alpha|00\rangle+\beta|01\rangle+\gamma|10\rangle+\delta|11\rangle\left\{\begin{array}{l}
\text { Measure first qubit in S-basis } \\
\longrightarrow
\end{array}\right\} \begin{array}{l}
\text { What are outcomes and } \\
\text { their probabilities? }
\end{array} \\
& |\psi\rangle=\alpha|00\rangle+\beta|01\rangle+\gamma|10\rangle+\delta|11\rangle
\end{aligned}
$$

We want to measure the one qubit.
We will go about addressing this question in several stages:

- We'll first examine the potential vectors that result from subjecting the 2-qubit vector to 1-qubit measurement.
- These potential vectors will form a vector space.
- Then, we'll build the projectors for these spaces.
- We'll also see that the projectors can be built from tensoring.

Stage 1: if you measure the first qubit, what are the possible 2-qubit vectors that result? Example: first qubit results in $|0\rangle$.
Second qubit could potentially be any state.
Describe this as the space

$$
V_{1}=\operatorname{span}\{|00\rangle,|01\rangle\}
$$

Any vector in this space has the first qubit as $\mid 0>$.
Similarly, the space of 2-qubit vectors that correspond to "first qubit is |1>" is

$$
V_{2}=\operatorname{span}\{|10\rangle,|11\rangle\}
$$

Stage 2: Thus, the potential results of first-qubit measurement lie in two orthogonal subspaces:

$$
V=V_{1} \cup V_{2}
$$

where

$$
\begin{array}{ll}
V_{1}=\operatorname{span}\{|00\rangle,|01\rangle\} & \text { First qubit }|0\rangle \\
V_{2}=\operatorname{span}\{|10\rangle,|11\rangle\} & \text { First qubit }|1\rangle
\end{array}
$$

Stage 3: Now define projectors for each of these subspaces

$$
\begin{aligned}
& P_{V_{1}}=|00\rangle\langle 00| \mp|01\rangle\langle 01| \\
& P_{V_{2}}=|10\rangle\langle 10|+|11\rangle\langle 11|
\end{aligned}
$$

Note: applying in Dirac form makes it easy to see why these are projectors for those subspaces:

- Consider any vector

$$
|\psi\rangle=\alpha|00\rangle+\beta|01\rangle+\gamma|10\rangle+\delta|11\rangle
$$

- Then

$$
\begin{aligned}
P_{V_{1}}|\psi\rangle & =\text { projection of }|\psi\rangle \text { on } V_{1} \\
& =(|00\rangle\langle 00|+|01\rangle\langle 01|)(\alpha|00\rangle+\beta|01\rangle+\gamma|10\rangle+\delta|11\rangle) \\
& =\alpha|00\rangle+\beta|01\rangle \\
& =\text { A vector in } V_{1}
\end{aligned}
$$

Recall: $V_{1}=\operatorname{span}\{|00\rangle,|01\rangle\}$

- Similarly,

$$
\begin{aligned}
P_{V_{2}}|\psi\rangle & =\text { projection of }|\psi\rangle \text { on } V_{2} \\
& =\gamma|10\rangle+\delta|11\rangle \\
& =\text { A vector in } V_{2}
\end{aligned}
$$

The outcomes of measurement and their probabilities are

$$
\begin{array}{cl}
\text { normalized } P_{V_{1}}|\psi\rangle & \text { occurs with probability } \left.\left|P_{V_{1}}\right| \psi\right\rangle\left.\right|^{2} \\
\text { normalized } P_{V_{2}}|\psi\rangle & \text { occurs with probability } \left.\left|P_{V_{2}}\right| \psi\right\rangle\left.\right|^{2} \\
\text { TECNNOOGGES }
\end{array}
$$

- Squared magnitudes of the projections are:

$$
\begin{aligned}
\left.\left|P_{V_{1}}\right| \psi\right\rangle\left.\right|^{2} & =|\alpha|^{2}+|\beta|^{2} \\
\left.\left|P_{V_{2}}\right| \psi\right\rangle\left.\right|^{2} & =|\gamma|^{2}+|\delta|^{2}
\end{aligned}
$$

- Normalized projections are:

$$
\begin{aligned}
& \frac{1}{\left.\left|P_{V_{1}}\right| \psi\right\rangle \mid} P_{V_{1}}|\psi\rangle=\frac{1}{\sqrt{|\alpha|^{2}+|\beta|^{2}}}(\alpha|00\rangle+\beta|01\rangle) \\
& \frac{1}{\left.\left|P_{V_{2}}\right| \psi\right\rangle \mid} P_{V_{2}}|\psi\rangle=\frac{1}{\sqrt{|\gamma|^{2}+|\delta|^{2}}}(\gamma|10\rangle+\delta|11\rangle)
\end{aligned}
$$

Let's take a closer look at the first projected vector to see that it makes sense:

- Recall we started in state

$$
|\psi\rangle=\alpha|00\rangle+\beta|01\rangle+\gamma|10\rangle+\delta|11\rangle
$$

- Let's write this as

$$
|\psi\rangle=|0\rangle \otimes(\alpha|0\rangle+\beta|1\rangle)+|1\rangle \otimes(\gamma|0\rangle+\delta|1\rangle)
$$

Here, we've just separated out the first qubit for emphasis.

- If we measure the first qubit as $|0\rangle$, then the second should be "untouched" in state $\alpha|0\rangle+\beta|1\rangle$.
- And the resulting 2-qubit vector should be

$$
|0\rangle \otimes(\alpha|0\rangle+\beta|1\rangle)=\alpha|00\rangle+\beta|01\rangle
$$

- But the latter is not normalized, and so, the normalized vector is:

$$
\frac{1}{\sqrt{|\alpha|^{2}+|\beta|^{2}}}(\alpha|00\rangle+\beta|01\rangle)
$$

Can the 2-qubit projectors be built out of smaller 1-qubit projectors?

Recall that the two 1-qubit S-basis projectors are

$$
\begin{aligned}
& P_{0}=|0\rangle\langle 0| \\
& P_{1}=|1\rangle\langle 1|
\end{aligned}
$$

Since we're not measuring the 2nd-qubit, the only projector that keeps the qubit the same is the identity

$$
I=|0\rangle\langle 0|+|1\rangle\langle 1|
$$

(in Dirac form).
Thus, one can construct the 2-qubit projectors via tensoring

$$
\begin{aligned}
& P_{V_{1}}=P_{0} \otimes I=|0\rangle\langle 0| \otimes(|0\rangle\langle 0|+|1\rangle\langle 1|) \\
& P_{V_{2}}=P_{1} \otimes I=|1\rangle\langle 1| \otimes(|0\rangle\langle 0|+|1\rangle\langle 1|)
\end{aligned}
$$

Let's work out the first one to see the details:

$$
\begin{aligned}
P_{0} \otimes I & =|0\rangle\langle 0| \otimes(|0\rangle\langle 0|+|1\rangle\langle 1|) & & \text { Tensor of projectors } \\
& =(|0\rangle\langle 0| \otimes|0\rangle\langle 0|)+(|0\rangle\langle 0| \otimes|1\rangle\langle 1|) & & \text { Tensor properties } \\
& =(|0 \otimes 0\rangle\langle 0 \otimes 0|)+(|0 \otimes 1\rangle\langle 0 \otimes 1|) & & \text { Proposition 4.5 } \\
& =|00\rangle\langle 00|+|01\rangle\langle 01| & & \text { Shorthand notation }
\end{aligned}
$$

Please prove that:

$$
|v\rangle\langle v| \otimes|w\rangle\langle w|=|v \otimes w\rangle\langle v \otimes w|
$$

NATIONAL CENTRE FOR
SCIENTIFIC RESEARCH "DEMOKRITOS"

Finally, let's remind ourselves of alternative tensoring notation:

- We can write

$$
|v\rangle\langle v| \otimes|w\rangle\langle w|=|\mathbf{v}\rangle|\mathbf{w}\rangle\langle\mathbf{v}|\langle\mathbf{w}| \quad \text { (Also written as }|v, w\rangle\langle v, w| \text {) }
$$

- Thus, we could also have written the earlier projector example as:

$$
\begin{aligned}
P_{0} \otimes I & =|0\rangle\langle 0| \otimes(|0\rangle\langle 0|+|1\rangle\langle 1|) \\
& =(|0\rangle\langle 0| \otimes|0\rangle\langle 0|)+(|0\rangle\langle 0| \otimes|1\rangle\langle 1|) \\
& =(|\mathbf{0}\rangle|\mathbf{0}\rangle\langle\mathbf{0}|\langle\mathbf{0}|)+(|\mathbf{0}\rangle|\mathbf{1}\rangle\langle\mathbf{0}|\langle\mathbf{1}|) \\
& =|00\rangle\langle 00|+|01\rangle\langle 01|
\end{aligned}
$$

- By convention, we do not write $|00\rangle$ as $|0,0\rangle$.

Homework

Consider the single-qubit projectors $P_{+}=|+\rangle\langle+|$and $P_{-}=|-\rangle\langle-|$.

1. Show that $\left(P_{+} \otimes I\right)|00\rangle=\frac{1}{\sqrt{2}}|+, 0\rangle$ and $\left(P_{+} \otimes I\right)|11\rangle=\frac{1}{\sqrt{2}}|+, 1\rangle$
2. Show that $\frac{1}{\sqrt{2}}|+, 0\rangle+\frac{1}{\sqrt{2}}|+, 1\rangle=|+,+\rangle$
3. Expand $\left(P_{+} \otimes I\right)$ into a matrix and use that to show $\left(P_{+} \otimes I\right)|\psi\rangle=|+,+\rangle$ (normalized) where $|\psi\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$

End of Lesson

MSc in QUANTUM

