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In maths…
To define that representation we need a further class of operators: projection operators or 
projectors for short. The projector P, onto the eigenstate |ai> is defined by

Application of Pi to an arbitrary state |ψi> yields a multiple of |ai>

where |<ai|ψ>| the “length” of the projection of |ψi> onto the unit vector |ai>. And if <ai|aj> = δij
then

As the Pi cover “all directions” of Hilbert space we obtain a completeness relation:

Pi is Hermitian: Pi = Pi
† Trace of a matrix A : Tr(A) the sum of the diagonal elements



Projection postulate
Assume a quantum system prepared in a state |ψ> and a single measurement of the observable A is 
performed. This cycle of preparation and measurement is repeated many times so that the notion 
of probability used in the postulate makes sense. 
Or imagine an ensemble containing a large number of independent copies of the quantum system, 
all prepared in the same state |ψ>. A is measured for all system copies independently.

Projection postulate : A single measurement of the observable A in the normalized state |ψ> yields
one of the eigenvalues ai of A with probability |<ai|ψ>|2 . Immediately after the measurement the 
system is in the (normalized) state

where Pi is the projection operator onto the subspace of eigenstates of A with eigenvalue ai .
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Projective measurement result
In general it is not possible to predict the outcome of a single measurement. A measurement of A
on an ensemble of systems as discussed above yields the average (expectation value)

𝐀 := 𝜓 𝐀 𝜓

In quantum mechanics the measurement change the state of a quantum system which is
probabilistic and irreversible process. The observation process is irreversible.

with deviations described by the variance (the square of the standard deviation):

The probability of obtaining outcome i for a given state |ψ> 
pi = < ψ|Pi|ψ>

And the post-measurement state is given by

| #𝜓"
#$%& = Pi|ψ>

< ψ|Pi|ψ> 



Projectors: a methodology for a single qubit

1. Identify the projectors for the basis:

2. Compute each projected vector:

3. Compute the squared magnitude of each projection: as 
the probability of seeing the i-th normalized 
projection.

4. Compute each normalized projection (each potential 
outcome):



Example 1:
Suppose we measure the state |0> in the basis {|+>, |->}.

|0> = 1/√2 (|+> + |->)

Step 1: Identify the projectors for the basis.

Step 2: Compute each projected vector:



Example 1:
Step 3: Compute the squared magnitude of each projection:

Step 4: Compute each normalized projection (each potential outcome):

This gives us possible outcomes and their associated probabilities:



Example: two-qubits states
Consider the two-qubit state

And suppose we use the two-qubit standard basis for two-qubit measurement:

For 2 qubits in the standard 
basis, the shorthand is:

Step 1: Identify the measurement basis projectors:



Example: two-qubits states
Step 2: Use the above to compute projected vectors: Step 3: The magnitudes of (non-zero) 

projected vectors are their probabilities:

Step 4: Normalize the projections to get the outcome vectors:



Tip for calculations
Notice the usefulness of Dirac notation, over matrices, in the second step, for example:



Example #3
Suppose you have a 2-qubit state and we want to 
measure only the first qubit.  The input two-qubit 
vector is

After measuring only the first qubit, what are the 
possible states, and with what probabilities?

Solution:
Clearly, since the first (top) qubit is already |0>, measuring this qubit alone should leave the top qubit as |0>.
Intuition suggests that because there's no entanglement, the second qubit should be the same. That is, after 
measurement, that state should be

Or 



Projective measurement: extending the 
theory to multiple qubits
We want to extend the theory to be able to handle different measurement scenarios with qubits.

Examples of scenarios include:

• Measuring all qubits simultaneously.

• Measuring just one qubit amongst the qubits.

• Measuring a subset of qubits from the qubits.

• And each case, having the freedom to use a variety of measurement bases.

• There are three aspects to extending single-qubit projective measurement to multiple qubits:

• Understanding how the particular measurement splits the whole -qubit space into orthogonal subspaces.

• Building -qubit projectors accordingly.

• Seeing if it helps to construct the -qubit projectors from smaller projectors (such as 1-qubit projectors).



We want to measure the one qubit.
We will go about addressing this question in several stages: 
• We'll first examine the potential vectors that result from subjecting the 2-qubit vector 

to 1-qubit measurement.
• These potential vectors will form a vector space.
• Then, we'll build the projectors for these spaces.
• We'll also see that the projectors can be built from tensoring. 



Stage 1: if you measure the first qubit, what are the possible 2-qubit vectors that result?
Example: first qubit results in |0>.
Second qubit could potentially be any state.
Describe this as the space

Any vector in this space has the first qubit as |0> .

Similarly, the space of 2-qubit vectors that correspond to "first qubit is |1>" is











Can the 2-qubit projectors be built out of 
smaller 1-qubit projectors?



Please prove that:





Homework



End of Lesson


