QE12. Measurement Theory (L2)

» Classic Measurement Theory
* Principles of Quantum Measurements

Dr Panagiotis Dimitrakis
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In maths...

To define that representation we need a further class of operators: projection operators or
projectors for short. The projector P, onto the eigenstate |a;> is defined by

P, := |a;){a;!
Application of P; to an arbitrary state |y,> yields a multiple of |a;>
P, ¢} = |a;) {a;|v) = (a;ieh)|a;)
where |<a;|y>| the “length” of the projection of [y,> onto the unit vector |a;>. And if <a,la;> =0
then P,P; = 6;;P;; especially P? = P,

As the P; cover “all directions” of Hilbert space we obtain a completeness relation:

d o
Z’Pi = Z ai){a; =1

i

P;1s Hermitian: P; = P;
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Projection postulate

Assume a quantum system prepared in a state |y> and a single measurement of the observable A is
performed. This cycle of preparation and measurement is repeated many times so that the notion
of probability used in the postulate makes sense.

Or imagine an ensemble containing a large number of independent copies of the quantum system,
all prepared in the same state |y>. A is measured for all system copies independently.

Projection postulate : A single measurement of the observable A in the normalized state |y> yields
one of the eigenvalues a; of A with probability |[<a;|y>|? . Immediately after the measurement the
system is in the (normalized) state

P; [)
[1P; [ W)

where P, is the projection operator onto the subspace of eigenstates of A with eigenvalue q;.
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Projective measurement result

In general it is not possible to predict the outcome of a single measurement. A measurement of A
on an ensemble of systems as discussed above yields the average (expectation value)

(A): = (P|AlY)

with deviations described by the variance (the square of the standard deviation): ((A - (A))Q) >0

The probability of obtaining outcome i for a given state |y>
pi=<ylPly> or  p=<yPPly>
And the post-measurement state is given by

|¢post>= P ly>
i
\/< w|Pi|y>

In quantum mechanics the measurement change the state of a quantum system which is
probabilistic and irreversible process. The observation process is irreversible.
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Example

Projective measurement is performed on a qubit state y. |y>=a|0>+p|1> using a projector P. Find the
probability the qubit state is (a) |0> and (b) |1>. What is the post-measurement state of |0>, | 1> respectively?

Solution:

’ H _ < wPlu> th Post measurement states are
We know that p; = < y|P;|y> thus Poly> _ [0XO) _ @0y = s
po= < y|Poly> = <y|0><0]y> = a’a = |a|? o lal? - lal
pi= < y|Ply> = <y|1><l|y> =B = |p| p1|¢> _ () _

N 1D = >
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Bloch sphere interpretation

Measurement Basis 1s {|0>, |1>} After a projective measurement is
completed the qubit will be in either one
of its computational basis states.
ly>=0|0> + B|1> In a repeated measurement the projected
state will be measured with certainty.

A quantum state 1s described by

Information content in a single qubit state

- infinite number of qubit states

- but single measurement reveals only 0 or 1 with probabilities
|a|?or |B]?

- measurement will collapse state vector on basis state

- to determine a and 3 an infinite number of measurements
has to be made
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Multiple Qubits : Two qubits case

2 Classical Bits | 2 Qubits with
quantum states — _
2" complex coefficients describe quantum state
Bit 1 Bit 1
0 0 |00>
[W> = 09|00> + 0,1 |01> + 01| 10> + 0y | 11>
0 1 |01>
1 0 | 10> o o
Normalization condition
1 1 |11>
- 2" different states - 2" basis states (n=2) E a; i = 1
(here n=2) - can be realized — J
- but only one is simultaneously L]
realized at any given | - quantum parallelism
time
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Composite Quantum Systems

QM postulate: The state space of a composite systems is the tensor product of the
state spaces of the component physical systems. If the component systems have
states ), the composite system state is

> =|y;> &|y,> & ... Sly>

Example:
1> =04|0> + By 1>

> =0,|0> + B, 1>
Thus

\w> = |y > & |yo> = |y wo> = 0,0,/00> + 0, 3,|01> + B0, 10> + BB, 11>
= 0| 00> + 0o |01> + 0ty 10> + 0y [ 11>
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Information content in multiple qubits

* 2" complex coefficients describe the state of a composite quantum system with n qubits
* Imagine to have 500 qubits, then 2°% complex coefficients describe their state.
* How to store this state?
v’ 2500 js [arger than the number of atoms in the universe.
v’ Itis impossible in classical bits.
v This is also why it is hard to simulate quantum systems on classical computers.
* A quantum computer would be much more efficient than a classical computer at simulating quantum

systems.

* Make use of the information that can be stored in qubits for quantum information processing!
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Entanglement

Definition: An entangled state of a composite system is a state that cannot be
written as a product state of the component systems.

E.g.: an entangled 2-qubit state (one of the Bell states)
|Y>=1/v2 (]00>+ |11>)

What is special about this state? Try to write it as a product state!

1> =0 [0> + By [1>, [yr> =0,|0> + o 1> It is not possible! This state is special, it is entangled!

Use this property as a resource in qguantum information

[wipo> = 0105|00> + 0, 3,[01> + Brop[10> + BB, 11> processing:

o super dense coding
O teleportation
O error correction

> = |yy> = o0, = 1/N2 and BB, = 1/\2

3(11[32?5031'1(1 Blaz;éo "
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Measurement of a single qubit in an
entangled state

P, ® I : measure an observable
|g>=1/v2(]00>+ |11>) which acts on A only and leaves B

unaffected
Measurement of state “0” of the first qubit “1”: fj

Pi(0) = < y|P, ® Ily> = 1/N2 <00] 1/¥2 (00> = 1/2 The two measurement results are correlated!
o Correlations in quantum systems can be

Post measurement state: stronger than correlations in classical

PiQIlYy>  1/N2|p> systems.

0>—W m —|00>

o This can be generally proven using the Bell

inequalities which will be discussed later.
Measurement of qubit two given that the first qubit was measured | 5 Make use of such correlations as a resource

at state |00> will then result with certainty in the same result:

for information processing (teleportation,
p2(0) = <y IQP|yp> = 1 error correction etc)
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Homework

Consider the two circuits below, each given the same input.

Wy =al0)+B|1) — | H __,g7<_>

) =a|0)+ 1) _>g7<__> H |—

1. Write down the possible states of the outputs.
2. Calculate the probabilities associated with each output state.

3. Replace Hadamard gate with another one and repeat step 1 and 2.

gaete
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End of Lesson
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