QE4. Quantum Solid-state Physics

Semiconducting devices:

- Kronig Penney Model
 - Effective mass

Dr Panagiotis Dimitrakis

The 14 basic

Atomic Potential – Linear Array of Atoms

$$U(r) = -\frac{1}{4\pi\varepsilon_0} \frac{e^2}{r}$$

PE of the electron around an isolated atom

When *N* atoms are arranged to form the crystal then there is an overlap of individual electron *PE* functions.

PE of the electron, V(x), inside the crystal is periodic with a period a.

$$V(r) = \sum_{n} \frac{-qe^{2}}{4\pi \varepsilon_{O} | r - na|}$$

The electron PE, V(x), inside the crsytal is periodic with the same periodicity as that of the crystal, a. Far away outside the crystal, by choice, V = 0 (the electron is free and PE = 0).

Bloch Theory - Bloch's Waves (1D)

If a periodic potential with period "a" can be defined as:

$$U(x+a) = U(x) = U(x+na)$$

Then the wavefunction is periodic, and can be defined in terms of base function:

$$\Psi(x+a) = e^{ika}\Psi(x)$$

Where

$$\Psi(x) = e^{ikx}u(x)$$

Kronig-Penney Model

Approximate crystal periodic Coulomb potential by rectangular periodic potential

$$-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2} + V(x)\psi(x) = E\psi(x)$$

Linear Array of Atoms

Single Atom

Wavefunction Periodic Boundary Conditions

Region I: $\Psi_{\rm I} = Ae^{iKx} + Be^{-iKx}$

Region II: $\Psi_{II} = Ce^{iQx} + De^{-iQx}$

Region III: Connected to Ψ_{II} via Bloch's Theorem

$$\Psi_{\text{III}} = e^{ik(a+b)}\Psi_{\text{II}}$$

$$K = \sqrt{\frac{2m}{\hbar^2}(E - V)} = \sqrt{\frac{2m}{\hbar^2}E} \qquad Q = \sqrt{\frac{2m}{\hbar^2}(V_0 - E)}$$

Periodic Conditions

$$\Psi_I(0) = \Psi_{II}(0)$$

$$\frac{d\Psi_I(0)}{dx} = \frac{d\Psi_{II}(0)}{dx}$$

$$\Psi_I(a) = e^{ik(a+b)}\Psi_{II}(-b) = \Psi_{III}(\alpha)$$

$$\frac{d\Psi_I(a)}{dx} = e^{ik(a+b)} \frac{d\Psi_{II}(-b)}{dx}$$

Solve the systems of 4 linear equations

Boundary between II and I, at x=0

1)
$$\psi_{II}(x=0) = \psi_{I}(x=0)$$

 $Ce^{0} + De^{0} = Ae^{0} + Be^{0} \rightarrow \underline{A + B} = C + \underline{D}$

2)
$$\psi'_{\parallel}(x=0) = \psi'_{\parallel}(x=0)$$

 $QC - QD = iKA - iKB \rightarrow \underline{iK(A-B)} = Q(C-D)$

Boundary between I and III, at x=a

undary between I and III, at
$$x = a$$

3) $\psi_I(x = a) = \psi_{III}(x = a) = e^{ik(a+b)}\psi_{II}(x = -b)$
 $Ae^{iKa} + Be^{-iKa} = e^{ik(a+b)}[Ce^{-Qb} + De^{Qb}]$

$$0 = \begin{pmatrix} M \\ B \\ C \\ D \end{pmatrix}$$

4)
$$\psi'_{I}(x=a) = \psi'_{III}(x=a) = e^{ik(a+b)}\psi_{II}'(x=-b)$$

 $AiKe^{iKa} - BiKe^{-iKa} = e^{ik(a+b)}[CQe^{-Qb} - DQe^{Qb}]$

K-P Solution – Allowed energies and gaps

$$\frac{Q^2 - K^2}{2QK} \sinh(Qb)\sin(Ka) + \cosh(Qb)\cos(Ka) = \cos[k(a+b)]$$

Q and K have E in them, so in principle, given a k we can solve for E to get E(k). In practice must be done numerically.

$$K^{2}(a+b)^{2} = \frac{2mE(a+b)^{2}}{\hbar^{2}} = 0.262468 E_{0}(a_{0}+b_{0})^{2} = \varepsilon$$

$$Q^{2}(a+b)^{2} = \frac{2m(U-E)(a+b)^{2}}{\hbar^{2}} = 0.262468 (U_{0} - E_{0})(a_{0} + b_{0})^{2} = u - \varepsilon$$

$$k(a+b) = \kappa$$

K-P Solution – Allowed energies and gaps

$$\frac{Q^2 - K^2}{2QK} \sinh(Qb)\sin(Ka) + \cosh(Qb)\cos(Ka) = \cos[k(a+b)]$$

$$H(\varepsilon) = \cos\left[\frac{\sqrt{\varepsilon}}{1+\alpha}\right] \cosh\left(\frac{\alpha\sqrt{u-\varepsilon}}{1+\alpha}\right] + \frac{(u-2\varepsilon)}{2\sqrt{u-\varepsilon}\sqrt{\varepsilon}} \sin\left(\frac{\sqrt{\varepsilon}}{1+\alpha}\right) \sinh\left[\frac{\alpha\sqrt{u-\varepsilon}}{1+\alpha}\right] = \cos(\kappa)$$

K-P Solution – Allowed energies and gaps

The right hand side of the Kronig-Penney expression, $H(\epsilon)$ as a function of ϵ , where u = 100. $\alpha = b/a = 0.1/3$. The energy gap exists in the green zone where $|H(\epsilon)| > 1$. $\epsilon = (9.87507 - 15.4575)$. $\epsilon = (39.5002 - 45.6691)$, $\epsilon = (88.8754 - 95.1686)$, and $\epsilon = (158.0 - 164.288)$.

The energy gap width ($\Delta \epsilon$) is the same

MSc in QUANTUM
COMPUTING AND
QUANTUM
TECNNOLOGIES

Kronig-Penney energy band in the reduced zone scheme. b/a = 0.1/3. u = 100.

The E-k behavior for the electron along different directions in the two dimensional crystal. The energy gap along [10] is at π/a whereas it is at $\pi/2/a$ along [11].

(a) Metal: For the electron in a metal there is no apparent energy gap because the 2nd BZ (Brillouin Zone) along [10] overlaps the 1st BZ along [11]. Bands overlap the energy gaps. Thus the electron can always find any energy by changing its direction.

(b) Semiconductor or insulator: For the electron in a semiconductor there is an energy gap arising from the overlap of the energy gaps along [10] and [11] directions. The electron can never have an energy within this energy gap, Eg.

Zero bandgap - Graphene

The E-k diagram of a direct bandgap semiconductor such as GaAs. The E-k curve consists of many discrete points each point corresponding to a possible state, wavefunction $\psi_k(x)$, that is allowed to exist in the crystal. The points are so close that we normally draw the E-k relationship as a continuous curve. In the energy range E_V to E_C there are no points ($\psi_k(x)$ solutions).

E – k Diagrams – Electric field

(a) In the absence of a field, over a long time, average of all k values is zero, there is no net momentum in any one particular direction.

(b) In the presence of a field E in the -x direction, the electron accelerates in the +x direction increasing its k value along x until it is scattered to a random k value. Over a long time, average of all k values is along the +x direction. Thus the electron drifts along +x.

E – k Diagrams – Hole movement

(a) In a full valence band there is no net contribution to the current. There are equal numbers of electrons (e.g. at b and b') with opposite momenta.

(b) If there is an empty state (hole) at b at the top of the band then the electron at b' contributes to the current.

Effective mass

In vacuum

$$F = q \varepsilon = m_o a$$

where m_0 is the electron mass

In semiconductor

$$F_{ext} = (-q)\mathbf{E}$$

 $F_{ext} + F_{int} = m_0 a$
 $F_{ext} = m_n^* a$

where

 m_n^* is the electron effective mass

Effective Mass

$$v_g = \frac{dx}{dt} = \frac{d\omega}{dk}$$

$$\omega = E/\hbar \to vg = \frac{1}{\hbar} \frac{dE}{dk}$$

$$\rightarrow dE = vg \, \hbar \, dk, \qquad dx = v_g \, dt$$

$$dE = F_{ext} \, dx = F_{ext} \, vg \, dt$$

$$F_{ext} = \frac{1}{v_g} \frac{dE}{dt} \rightarrow F_{ext} = \hbar \frac{dk}{dt}$$

Group Velocity defined as the velocity of the wavefunction of the electrons (analogous to speed of sinusoidal wave).

Effective Mass

Acceleration:
$$a = \frac{dv_g}{dt} = \frac{d}{dt} \left[\frac{1}{\hbar} \frac{dE}{dk} \right] = \frac{1}{\hbar} \frac{d}{dk} \left[\frac{dE}{dt} \right] = \frac{1}{\hbar} \frac{d}{dk} \left[\frac{dE}{dt} \frac{dk}{dt} \right]$$

$$a = \frac{1}{\hbar} \frac{d^2 E}{dk^2} \frac{dk}{dt} = \frac{1}{\hbar^2} \frac{d^2 E}{dk^2} \hbar \frac{dk}{dt} = \frac{1}{\hbar^2} \frac{d^2 E}{dk^2} F_{ext}$$

But $F_{ext} = m * \alpha$, thus :

$$m^* = \left[\frac{1}{\hbar^2} \frac{d^2 E}{dk^2}\right]^{-1} = \hbar^2 \left[\frac{d^2 E}{dk^2}\right]^{-1}$$

The End

THANK YOU

E-class Support

Lesson	Kassap	Hanson
1		Chap.5
2		
3		

