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Fig 5.48 

The electron PE, V(x), inside the crsytal is periodic with the same
periodicity as that of the crystal, a. Far away outside the crsytal, by
choice, V = 0 (the electron is free and PE = 0).

When N atoms are
arranged to form the
crystal then there is an
overlap of individual
electron PE functions.
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The electron PE, V(x), inside the crsytal
is periodic with the same periodicity as 
that of the crystal, a. Far away outside 
the crystal, by choice, V = 0 (the 
electron is free and PE = 0). 



Bloch Theory - Bloch’s Waves (1D) 

If a periodic potential with period “𝑎” can be defined as: 

𝑈(𝑥+𝑎) = 𝑈(𝑥) = 𝑈(𝑥+n𝑎) 

Then the wavefunction is periodic, and can be defined in terms 
of base function: 

Ψ(𝑥+𝑎) =𝑒𝑖𝑘𝑎Ψ(𝑥) 

Where Ψ(𝑥) = 𝑒𝑖𝑘𝑥𝑢(𝑥) 



Kronig-Penney Model 
Approximate crystal periodic Coulomb potential by rectangular periodic potential 
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Kronig-Penney Model 

• Approximate crystal periodic Coulomb potential by 
rectangular periodic potential 

ΨII ΨI 
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Wavefunction Periodic Boundary Conditions 

Periodic Conditions

ΨΙΙΙ

= ΨΙΙΙ(α)



Solve the systems of 4 linear equations



K-P Solution – Allowed energies and gaps

𝑄 and 𝐾 have 𝐸 in them, so in principle, given a 𝑘 we can solve for 𝐸 to get E(k). 
In practice must be done numerically. 



K-P Solution – Allowed energies and gaps

=



K-P Solution – Allowed energies and gaps

The right hand side of the Kronig-Penney expression, H(ε) as a function of ε, where u = 100. α = b/a = 
0.1/3. The energy gap exists in the green zone where |H(ε)|>1. ε = (9.87507 - 15.4575). ε= (39.5002 -
45.6691), ε = (88.8754 - 95.1686), and ε = (158.0 - 164.288). 

The energy gap width (Δε) is the same 



E – k Diagrams (energy dispersion diagrams)

Kronig-Penney energy band in the reduced zone 
scheme. b/a = 0.1/3. u = 100. 



E – k Diagrams (energy dispersion diagrams)

The E-k behavior for the electron 

along different directions in the 

two dimensional crystal. The 

energy gap along [10] is at π/a

whereas it is at π⎷2/a along [11]. 



E – k Diagrams (energy dispersion diagrams)
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Fig 4.55 

(a) Metal: For the electron in a metal there is no apparent energy gap
because the 2nd BZ (Brillouin Zone) along [10] overlaps the 1st BZ along
[11]. Bands overlap the energy gaps. Thus the electron can always find any
energy by changing its direction.

(b) Semiconductor or insulator: For the electron in a semiconductor there is
an energy gap arising from the overlap of the energy gaps along [10] and

[11] directions. The electron can never have an energy within this energy
gap, Eg.
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(a) Metal: For the electron in a metal there is 

no apparent energy gap because the 2nd BZ 

(Brillouin Zone) along [10] overlaps the 1st 

BZ along [11]. Bands overlap the energy gaps. 

Thus the electron can always find any 

energy by changing its direction. 

(b) Semiconductor or insulator: For the 

electron in a semiconductor there is 

an energy gap arising from the overlap 

of the energy gaps along [10] and [11] 

directions. The electron can never have 

an energy within this energy gap, Eg.



Zero bandgap - Graphene



E – k Diagrams (energy dispersion diagrams)

The E-k diagram of a direct bandgap 
semiconductor such as GaAs. The E-
k curve consists of many discrete 
points each point corresponding to 
a possible state, wavefunction 
ψk(x), that is allowed to exist in the 
crystal. The points are so close that 
we normally draw the E-k 
relationship as a continuous curve. 
In the energy range EV to EC there 
are no points (ψk(x) solutions). 



E – k Diagrams – Electric field
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Fig 5.51 

(a) In the absence of a field, over a long time, average of all k values is
zero, there is no net momentum in any one particular direction. (b) In
the presence of a field E in the -x direction, the electron accelerates in
the +x direction increasing its k value along x until it is scattered to a
random k value. Over a long time, average of all k values is along the
+x direction. Thus the electron drifts along +x.
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(a) In the absence of a field, over a 
long time, average of all k values is 
zero, there is no net momentum 
in any one particular direction. 

(b) In the presence of a field E in the -x direction, the 
electron accelerates in the +x direction increasing its k 
value along x until it is scattered to a random k value. 
Over a long time, average of all k values is along the +x 
direction. Thus the electron drifts along +x.

E



E – k Diagrams – Hole movement

(a) In a full valence band there is no net 
contribution to the current. There are equal 
numbers of electrons (e.g. at b and b') with 
opposite momenta. 

(b) If there is an empty state (hole) at b at the 
top of the band then the electron at b' 
contributes to the current. 
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Fig 5.52 

(a) In a full valence band there is no net contribution to the current.
There are equal numbers of electrons (e.g. at b and b') with
opposite momenta. (b) If there is an empty state (hole) at b at the
top of the band then the electron at b' contributes to the current.
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From Principles of 
Electronic Materials and 
Devices, Third Edition, 
S.O. Kasap (© McGraw-
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Effective mass



Effective Mass

Group Velocity defined as the velocity of the 

wavefunction of the electrons (analogous to 

speed of sinusoidal wave ).



Effective Mass

Acceleration :

But Fext = m* α, thus : 



The End
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