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Confinement effects: wavefunctions
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Confinement effects: DoS
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Free electrons and Confined electrons

The fact that light is made up of photons lead Louis de Broglie in 1923
to make the radical suggestion that all “particles” having energy E
and momentum p should have wavelike properties, too.

For photons (waves)

E=h.f

c=ANT=A\f

E=h.c/A Free electron condition
E=p.c Ao <<L,L,L,

o=h/A=h.k/(2n)

de Broglie wavelength
p=mv= (2mE)¥/2
A.=h/(2m_E)Y/?

E=1eV
A.=1,23 nm
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The de Broglie wavelength at the Fermi energy is called the Fermi
wavelength, and is denoted by the symbol A.. Therefore, for a space
to be sufficiently “large” so that the energy levels of the electron
form an approximately continuous set, we usually require

As=h/(2m E[)Y/?
Confinement condition
A->L, 1D confinement
A >> L, L, 2D confinement

A >>L, L, L, 3D confinement

Electron movement will be confined in all three directions (i.e.,
electrons will “feel” the boundaries in the x-, y-, and z-directions),
exhibiting energy quantization in three dimensions, and will not be free
in any direction. This makes for an effectively zero-dimensional system
called a quantum dot.
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Fermi energy of materials

Fermi Ener Fermi Temperature Fermi Velocit
Element eV . x 104K P x 105 m/s !
Li 4.74 5.51 1.29
Na 3.24 3.77 1.07
K 2.12 2.46 0.86
Rb 1.85 2.15 0.81
Cs 1.59 1.84 0.75
Cu 7.00 8.16 1.57
Ag 5.49 6.38 1.39 (hc)z 3 2/3
Au 5.53 6.42 1.40 E. = - 2/3
Be 14.3 16.6 2.25 F = 2 n
Mg 7.08 8.23 1.58 Sm{: Frn
Ca 4.69 5.44 1.28
Sr 3.93 457 1.18
Ba 3.64 4.23 1.13
Nb 5:32 6.18 1.37 n free electron density (m-3)
Fe 11.1 13.0 1.98
Mn 10.9 12.7 1.96
Zn 9.47 11.0 1.83
cd 7.47 8.68 1.62
Hg 7.13 8.29 1.58
Al 11.7 13.6 2.03
Ga 10.4 12.1 1.92
In 8.63 10.0 1.74
Tl 8.15 9.46 1.69
Sn 10.2 11.8 1.90
Pb 9.47 11.0 1.83
Bi 9.90 115 1.87
Sb 10.9 12.7 1.96
Ashcroft, N. W. and Mermin, N. D., Solid State Physics, Saunders, 1976
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Energy Levels in QDs
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Density of states (0
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QD Energy Bandgap

QD Energy band diagram
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QD measurements
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Single Electron Capacitor
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Fig. 1.2: (a) Two-terminal arrangement for discussing the Coulomb blockade effect in electrical transport.
(b) The respective capacitance circuit. Note Cy = Cs + Cp. (c) Sketch of the expected non-linear
Ins(Vps) characteristic with energy schemes for distinct Vs values reflecting the energetical position of
the Fermi levels of the island for charge states ¢ = —e and g = e relatively to the Fermi level of source
and drain.
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Single Electron Transistor — SET
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Fig. 1.3: (a) Three-terminal arrangement of a single-electron transistor. (b) The respective capacitance

circuit. Note Cx = Cs + Cp + Cg. (¢) With increasing gate voltage Vgg, electrons are accumulated on

the island. Whenever the charge state can energetically fluctuate by e, i.e., the energy for two charge

states is degenerate, current Ins flows for small applied Vs through the island, leading to a periodically

modulated Ins(Vas)-characteristic — the Coulomb blockade oscillations. For distinct Vs values, the

respective energy schemes are given.
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Single Electron Transistor — SET
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Example

Calculate the size of a sphere
shaped quantum dot of Si that
would produce observable
single electron effect at room
temperature.

Solution. The energy change
on charging of the quantum
dot capacitor should be much
larger than KT in order to
observe the single electron
effects.
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At300K, kT=138x 10°JK "' x 300K =414x 10™)
Taking 1 eV = 1.602 x 1077, kT = 258.43 x 10 eV = 25.84 meV.
The energy change on charging of the quantum dot by a single electron
=q*72C =¢&/2C

The capacitance of the sphere shaped capacitor, C =4megor =4t x [1.5x
8.85x 10" x r
(taking the dielectric constant of silicon to be 11.5 and the permittivity of
vacuum , & = 8.85x 10""F.m".)
C=1278294x rx 10" F=1.278 x r x 10""* F, when r is taken in nm.
Energy change on charging by a single electron

=e/2C=(1.6x 10"°)/2 x1.278 x r 10""* J == 0.0626/r eV
This energy should be much larger than kT for the single electron effect
to be observable
Le. 0.0626/r eV >> (0.02584 eV at 300K
or 0.0626/r = 0.5 x 0.02584 = 0.1292 (say) or ¥ = 0.5 nm
Hence the quantum dot should have a radius of the order of 0.5 nm for
this effect to be observable at room temperature.
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Single Electron Transistor — SET

* Conditions for observing single
electron tunneling phenomena

e E.>kT
« E_=e2/2C,
* R, >R,
* R,=h/e?(25.8 KOhms)

Another requirement for observing the single electron
effects is that the fluctuations in the number of electrons
In the quantum dot should be negligible. The time
constant for an R-C circuit is RC. The time taken by an
electron to move in or out of a junction should be of this
order.

According to the Heisenberg uncertainty principle, the
product of the energy change accompanying this transfer
and the time taken should be larger than h, the Planck’s
constant
AE.At > h
or (€%/2C).RC >h
or R >2 h/e? = 51.6 kQ.
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Single electron charging (Il)

Electrostatic Energy, AN electron charging

% Cy AN e)?
EEISt(&N;VGS';W']S) =—-ANe ( ‘F} VGS -+ 1“ VI'JS) + Q
Cy, Ch; 2Cy;

Electrostatic Barriers, AN + 1 electron charging

AEs (AN 4+ 1; Vas, Vbg) = Easi (AN + 1; Vas, Vng) — Eas (AN; Vis, Vbg)
2 ¥ ¥
e Ca Chp
— (AN + 1L —e Ve — € Ve .
( + 2) G}: € G}j &k = C}j 125

AE 1 ,p(AN:Vas, Vbs) = FEast(AN — 1: Vs, Vbg) — e Vg — Eaet (AN Vs, Vig)

2 ¥ ¥
e Ca Cp
> Vas—e |1 — Vbs .
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SET Measurements
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Example

30 nm wide Si-wire channel and poly-Si gates defined by E-beam lithography

Ve T | """ Vi (MOS-ON) Si layer Si wire
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Current quantization due to single electron transfer in Si-wire charge coupled device, Applied Physics Letters, Vol 84 (8), 23 Feb 2004, 1323
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The End
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