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Αβεβαιότητα…

The Flaw of Averages
Plans based on average 
inputs are on average wrong

*Δείτε το βιβλίο: Savage S. L., (2012), The Flaw of Averages: 
Why We Underestimate Risk in the Face of Uncertainty

… Η απάντηση στο γιατί τόσα σχέδια/πλάνα βγαίνουν τελικά εκτός 
προγράμματος, εκτός προϋπολογισμού, και εκτιμήσεων.



Βασικοί μεθοδολογικοί άξονες
 Ανάλυση εμπειρικών δεδομένων,
 Θεωρητική τεκμηρίωση,
 Χρήση μοντέλων και τεχνικών προσομοίωσης.

Κίνητρο

Πως μπορεί να βελτιωθεί η λήψη αποφάσεων όσον αφορά τον σχεδιασμό, τη διαχείριση 
και τη λειτουργία σύνθετων συστημάτων υδατικών πόρων;

Με τέτοιο τρόπο όπου:
 Λαμβάνεται υπόψιν η αβεβαιότητα,
 Λαμβάνονται υπόψιν εναλλακτικές μελλοντικές συνθήκες,
 Λαμβάνεται υπόψιν η βέλτιστη λύση,
 Λαμβάνεται υπόψιν οι (τυπικές) υπολογιστικές δυνατότητες,
 Λαμβάνεται υπόψιν η επεξηγησιμοτητα (explainability).



Ποια είναι τα εργαλεία για να αντιμετωπίσουμε την αβεβαιότητα;



Γιατί χρειαζόμαστε και τη στατιστική και τα «στοχαστικά»; Δεν αρκούν η 
τεχνητή νοημοσύνη (ΑΙ) και η μηχανική μάθηση (ML); 

• Εξ ορισμού η «γλώσσα της αβεβαιότητας»: πιθανοτήτες, 
στατιστική και στοχαστικές μέθοδοι (στο χωροχρόνο).

• Επιτρέπουν τη δημιουργία ενός άπειρου αριθμού 
πιθανών πραγματοποιήσεων (και, ως εκ τούτου, 
εναλλακτικών μελλοντικών συνθηκών).

• Επιτρέπουν την ανάπτυξη μεθοδολογικών 
πλαισίων/προσεγγίσεων για τη λήψη βέλτιστων 
αποφάσεων σε συνθήκες αβεβαιότητας.

• Υπολογιστικά εφικτές μέθοδοι.
• Δεν απαιτούνται πρόσθετα εργαλεία ή μέθοδοι για την 

εξήγηση των προβλέψεων/προσομοιώσεων – σε αντίθεση 
με τις προσεγγίσεις black-box AI/ML.



«Κλασσικά» μοντέλα κατανομών

• Ομοιόμορφη (Uniform)
• Κανονική/Γκαουσιανή (Normal/Gaussian)
• Exponential
• Gamma
• Weibull
• Generalized Extreme Value (extreme value)
• Gumbel (extreme value)
• Generalized Pareto (extreme value)
• Log-Normal
• Logistic
• Beta (φραγμένη στο (0,1))
• Kumaraswamy (φραγμένη στο (0,1))
• Bernoulli (διακριτή)
• Poisson (διακριτή)
• Binomial (διακριτή)

Beta

Gaussian
Weibull

Uniform



Περισσότερες (και πιο ευέλικτες) κατανομές

Generalized Gamma
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𝑏: παράμετρος κλίμακας | 𝑎௜: παράμετρος σχήματος

 Ικανές να περιγράψουν μεγάλο εύρος φαινομένων (φυσικών ή 
μη).

 Κατάλληλες για φυσικές διεργασίες αφού 𝑋 ∈ 0, ∞

Ενδεικτικά, εργασίες που χρησιμοποιούν τις παραπάνω κατανομές 
με αντικείμενο τη στατιστική/στοχαστική υδρολογία (π.χ., Hao and 
Singh, 2008; Grimaldi et al., 2011;  Tsoukalas et al., 2019; 2020).

Burr Type XII

Generalized Gamma

Θεωρητική
Δεδομένα

Θεωρητική
Δεδομένα



Διακριτή-συνεχής (μικτή) κατανομή με άτομο/ασυνέχεια στο μηδέν
Κατανομή με άτομο/ασυνέχεια στο μηδέν: 

𝐹௑ 𝑥 =  ൝
  𝑝଴,                                  𝑥 ≤ 0

  𝑝଴ + 1 − 𝑝଴ 𝐺௑ 𝑥 , 𝑥 > 0

Πιθανότητα μηδενικής (και μη μηδενικής) τιμής

𝑝଴ = 𝑃 𝑋 = 0 = 1 − 𝑝ଵ 
𝑝ଵ = 𝑃 𝑋 > 0 = 1 − 𝑝଴ 

Συνεχής κατανομή (θετικές τιμές)
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Ιδιαίτερα χρήσιμη για διεργασίες που 
χαρακτηρίζονται από διαλείπουσα 
συμπεριφορά.

Δεδομένα
Θεωρητική

(π.χ., Bell, 1987;  Tsoukalas et al., 2019; 2022)



… και αν έχουμε δύο ή περισσότερες τυχαίες μεταβλητές;

𝑓௑ 𝑥𝑓௒ 𝑦

𝑓௑௒ 𝑥, 𝑦
Συσχετισμένες μη-Γκαουσιανές τ.μ.

Oh, Lord, please keep the world linear and Gaussian. 
~Chester Kisiel’s [1967] pray to the theoretical hydrologist, Klemeš [1997 (p. 288)]



… και αν έχουμε δύο ή περισσότερες τυχαίες μεταβλητές;
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𝑓௑௒ 𝑥, 𝑦
Συσχετισμένες μη-Γκαουσιανές τ.μ.

Oh, Lord, please keep the world linear and Gaussian. 
~Chester Kisiel’s [1967] pray to the theoretical hydrologist, Klemeš [1997 (p. 288)]



Συναρτήσεις συζεύξεων (copula functions)

Έξι πολυμεταβλητές κατανομές, όλες με Γκαουσιανές 
(Gaussian/Normal) περιθώριες κατανομές, αλλά 
διαφορετική συνάρτηση σύζευξης (copula).

Τι είναι οι συναρτήσεις ζεύξης 
(copula functions);

Με απλά λόγια, είναι μαθηματικά «εργαλεία» που 
επιτρέπουν την κατασκευή από-κοινού κατανομών 
(με 2 ή περισσότερες μεταβλητές) μοντελοποιώντας 
ξεχωριστά τη δομή εξάρτησης (πολυμεταβλητές 
συναρτήσεις συζεύξεων με ομοιόμορφη περιθώρια 
κατανομή) και τις περιθώριες κατανομές.

Παράδειγμα

Clayton copula

Με τη βοήθεια των copula, η συνάρτηση κατανομής 
𝐹𝑿೙

𝑥ଵ, … , 𝑥௡ = 𝑃 𝑋ଵ ≤ 𝑥ଵ, … , 𝑋௡ ≤ 𝑥௡  δίνεται από 
τη σχέση: 

𝐹𝑿೙
𝑥ଵ, … , 𝑥௡ = 𝐶(𝑢ଵ, … , 𝑢௡; 𝜽)

όπου 𝑢௜ = 𝐹௑೔
𝑥௜ , είναι ομοιόμορφα κατανεμημένες 

τ.μ. στο διάστημα (0,1), ενώ το διάνυσμα 𝜽 εμπεριέχει 
τις παραμέτρους της συνάρτησης copula (συνήθως 1 ή 
2) 𝐶(ȉ, … ,ȉ).



Προσομοίωση συσχετισμένων μη-Γκαουσιανών τυχαίων μεταβλητών

𝑅 =  

 𝑋ଵ 𝑋ଶ 𝑋ଷ

𝑋ଵ

𝑋ଶ

𝑋ଷ

1 0.7 0.5
0.7 1 0.8
0.5 0.8 1

𝑋ଵ~ Gamma
𝑋ଶ~ Beta
𝑋ଷ~ log-Normal

Ωστόσο, οι τ.μ. είναι 
συσχετισμένες μεταξύ τους:

Έστω ότι έχουμε 3 τ.μ. με κατανομές 𝐹௑೔
:

Γένεση πραγματοποιήσεων συσχετισμένων μη-Γκαουσιανών τ.μ.

Παράδειγμα



Δεσμευμένες μη-Γκαουσιανές κατανομές
Η χρήση των copula μπορεί να επεκταθεί και για την εξαγωγή δεσμευμένων (conditional) κατανομών 
(βλ. Tsoukalas [2018]).

Υπενθυμίζεται ότι:
𝐹௑௒ = 𝑥, 𝑦 = 𝐶 𝐹௑ 𝑥 , 𝐹௒(𝑦) = 𝐶 𝑢௑, 𝑢௒

 
όπου 𝐹௑ 𝑥 = 𝑢௑ και 𝐹௒ 𝑦 = 𝑢ం οι περιθώριες CDF των τ.μ. 𝛸 και 𝛶.

Στην περίπτωση του Gaussian copula ισχύει ότι: 𝐶 𝑢௑, 𝑢௒ = Φଶ 𝑢௑, 𝑢௒; 𝜃 , 
όπου Φଶ η τυποποιημένη πολυμεταβλητή κανονική κατανομή 2 μεταβλητών.

𝑃 𝑋 ≤ 𝑥 𝑌 = 𝑦 = Φ
Φିଵ 𝑢௑ − 𝜃Φିଵ 𝑢௒
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ିଵ Φ 𝜃Φିଵ 𝑢௒ + 1 − 𝜃ଶ Φିଵ 𝑎
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Conditional copula CDF

Copula joint CDF

Conditional Gaussian Copula CDF

Conditional Gaussian Copula ICDF (conditional Quantile function)



Προσομοίωση δεσμευμένων μη-Γκαουσιανών τυχαίων μεταβλητών

Έστω 𝑋ଵ~ Gamma(2, 10) και 𝑋ଶ~ logNormal(0.10, 4) με 𝜌ଵ,ଶ = 0.7, και Gaussian copula (𝜃ଵ,ଶ = 0.73). 

(A) Ποσοστημόρια για  𝑝 = 0.01, 0.5 και 0.99 . (B) Δεσμευμένη PDF για 𝑋ଶ: = 𝑥ଶ = 45 και  𝑋ଶ: = 𝑥ଶ = 65.

Παράδειγμα

𝟒𝟓 𝟔𝟓 

𝜌ଵ,ଶ = 0.7 | 𝜃ଵ,ଶ = 0.73A B

𝑓 𝑋ଵ|𝑋ଶ = 𝑥ଶ𝑥ଶ

𝑥
ଵ𝑥

ଵ



Προβλήματα, προκλήσεις και ευκαιρίες!

Χαρακτηριστικά (και προκλήσεις!) 
υδρομετεωρολογικών διεργασιών
• Μη-Γκαουσιανή κατανομή
• Διαλέιπουσα φύση (π.χ., βροχόπτωση)
• Χώρο-χρονική συσχέτιση 
• Περιοδικότητα 
• Διαφορετική πιθανοτική συμπεριφορά ανά 

χρονική κλίμακα συνάθροισης (δηλ. πρόβλημα 
συναθροισμένης κατανομής)

Τα υδρομετεωρολογικά δεδομένα 
χαρακτηρίζονται από:
 έλλειψη πληροφορίας (π.χ. μετρήσεις) 

στην χρονική/χωρική κλίμακα 
ενδιαφέροντος,

 την ύπαρξη ελλειπουσών τιμών, και
 το περιορισμένο μήκος των ιστορικών 

δεδομένων.

Προβλήματα και προκλήσεις που αποτελούν ακόμη σήμερα αντικείμενο έρευνας:
1. (Στοχαστική) προσομοίωση υδρομετεωρολογικών διεργασιών, 
2. Συμπλήρωση κενών (συμπεριλαμβανομένης της χωρικής παρεμβολής), 
3. Ποσοτικοποίηση της προγνωστικής αβεβαιότητας μοντέλων
4. Χωροχρονικός καταβιβασμός δεδομένων. 

Τυπικές εργασίες σχεδόν σε όλα τις μελέτες και έργα μηχανικού!



Στοχαστική προσομοίωση υδρομετεωρολογικών διεργασιών
Χαρακτηριστικά φυσικών (και μη) διεργασιών
• Μη-Γκαουσιανή κατανομή
• Διαλέιπουσα φύση (π.χ., βροχόπτωση)
• Χώρο-χρονική συσχέτιση 
• Περιοδικότητα 
• Διαφορετική πιθανοτική συμπεριφορά ανά χρονική κλίμακα 

συνάθροισης (δηλ. πρόβλημα συναθροισμένης κατανομής)

Πολλά μοντέλα!

Μοντέλα στοχαστική προσομοίωσης 
• Linear stochastic models
• Point process models 
• Two-part models
• Resampling models 
• Copula-based models

Συνήθης υπόθεση μοντέλων συνθετικών χρονοσειρών 
Διατήρηση βασικών στατιστικών μεγεθών (π.χ., μέση τιμή, 
διασπορά, ασυμμετρία, και συσχετίσεις χαμηλής τάξης) των 
ιστορικών δεδομένων (Matalas and Wallis, 1976). 

Ωστόσο κάτι τέτοιο δεν συνεπάγεται τη διατήρηση της 
πιθανοτικής κατανομής τους.

Κάτι που χαρακτηριστικά αναφέρεται από τους, Klemeš and Borůvka (1974):

“Simulation of a serially correlated series with a given marginal distribution is one of the important 
prerequisites of synthetic hydrology and of its applications to analysis of water resource systems”. 

Source: DataSaurus Dozen



και Προσοχή…

The devil is in the details!
….where the extremes 
live. 



Βασική ιδέα: Χρήση της έννοιας των Copula (Sklar, 1959; 1973) και συγκεκριμένα του Gaussian copula.

Γενικευμένη μεθοδολογία για τη στοχαστική 
προσομοίωση φυσικών διεργασιών με 
οποιαδήποτε κατανομή και δομή συσχέτισης. 

…καθώς και για προσομοίωση σε πολλαπλές 
κλίμακες (μέσω επιμεριστικής διαδικασίας - 
disagreggation)!

• Φειδωλή παραμετροποίηση  Μέσω 
θεωρητικών μοντέλων (αυτό/έτερο-) 
συσχέτισης.

• Περιοδικότητα  Με τη χρήση κυκλο-στάσιμων 
μοντέλων (πχ., PAR).

• Διαλείπουσα συμπεριφορά  Με τη χρήση 
κατανομών με άτομο/ασυνέχεια στο μηδέν.

Ανάπτυξη μη-Γκαουσιανών στοχαστικών μοντέλων

Βλέπε: (Tsoukalas et al., 2020; 2019; 2018a; 2018b; 2018c; 2017; Tsoukalas 2018; Kossieris et al. 
2019)



• Δεδομένα: Ημερήσια βροχόπτωσης

• Κατανομή: Burr type XII με άτομο στο μηδέν. 

• Δομή συσχέτισης στο χώρο (𝜌ௗ) και χρόνο (𝜌ఛ):

Προσομοίωση μη-Γκαουσιανών τυχαίων πεδίων (non-Gaussian random 
fields)
Χώρο-χρονική προσομοίωση βροχόπτωσης

𝜌ௗ = 1 + 0.4𝑑 ିଵ ଴.ଶ⁄
𝜌ఛ = 1 + 0.06𝜏 ିଵ ଴.ଵ⁄

Burr type XII 

Περισσότερες πληροφορίες: Tsoukalas et al. (2020). Grid:  30 x 30



Προσομοίωση δεσμευμένων μη-Γκαουσιανών τυχαίων πεδίων (conditional 
non-Gaussian random fields)
Γιατί; Οι περισσότερες υδρομετεωρολογικές μεταβλητές/διεργασίες χαρακτηρίζονται από μη-Γκαουσιανές 
κατανομές.

Πως? + CopulasGeostatistics +Stochastics

Παράδειγμα: Χωρική 
παρεμβολή ενός τυχαίου 
πεδίου με περιθώρια κατανομή 
Beta (δηλ. περιορισμένη στο (0, 
1)).

Διαθέσιμα δεδομένα: 
«κόκκινες κουκκίδες».

Τελικό προϊόν: Μη-Γκαουσιανή 
χωρική παρεμβολή πλέγματος

Πραγματικό πεδίοΠροσομοιωμένο πεδίο

Παράδειγμα: Έστω μετρήσεις εδαφικής υγρασίας (0-100%) σε διάφορες θέσεις/σταθμούς



Προσομοίωση δεσμευμένων μη-Γκαουσιανών τυχαίων πεδίων (conditional 
non-Gaussian random fields)

Εκτίμηση βροχόπτωσης 
σε άγνωστη θέση!

Τυπικές εφαρμογές
- Δημιουργία 

συνθετικών/στοχαστικών πεδίων 
με οποιαδήποτε κατανομή και 
δομή εξάρτησης.

- Συμπλήρωση και επέκταση 
δεδομένων.

- Χωρική παρεμβολή δεδομένων.



Προσομοίωση δεσμευμένων μη-Γκαουσιανών τυχαίων πεδίων (conditional 
non-Gaussian random fields) Παράδειγμα

- Δεδομένα ημερήσιας βροχόπτωσης: 102 σταθμοί (NL)
- Τεχνητή εισαγωγή 20% κενών τιμών
- Εφαρμογή της μεθοδολογίας

Σύγκριση μεταξύ πραγματικών and συμπληρωμένων τιμών, με βάση 
(αριστερά) την προτεινόμενη μεθοδολογία και (δεξιά) το λογισμικό 
missForest* (R package). 

*Σημείωση: Το λογισμικό missForest είναι μια σύγχρονη και ιδιαίτερα δημοφιλής 
(~6500 αναφορές) προσέγγιση (ML-based) για τη συμπλήρωση κενών. 
*Stekhoven D., Bühlmann P., (2012). MissForest—non-parametric missing value 
imputation for mixed-type data, Bioinformatics.

Proposed missForest
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𝑅ଶ = 0.827 
MSE = 3.89 

𝑅ଶ = 0.808 
MSE = 4.33 



Ποσοτικοποίηση της προγνωστικής αβεβαιότητας μοντέλων

 ARMA models
 Artificial Neural networks,
 Deep learning architectures,
 Support vector machines,
 Regression Trees
 Etc.

Prediction
Uncertainty

FuturePast

+ Copulas = Probabilistic modelsDeterministic models (inc. ML) 

Πως μπορούμε να μεταβούμε από προσδιοριστικές (ντετερμινιστικές) προβλέψεις/μοντέλα σε 
πιθανοτικά;



Ποσοτικοποίηση της προγνωστικής αβεβαιότητας μοντέλων
Εφαρμογή της προτεινόμενης μεθοδολογίας
• Ωριαία δεδομένα ζήτησης νερού (Battle of Water Demand Forecasting)
• Δεδομένα αστικής/εμπορικής περιοχής κοντά στο κέντρο της πόλης (anonymized)

• Βαθμονόμηση/εκπαίδευση προγνωστικού μοντέλου μηχανικής μάθησης:
Long Short-Term Memory (LSTM) neural network (1-step ahead forecasting)
Predictors: Past water demand values, meteorological parameters, and temporal features (month, 
day, and hour).

Μέρος παρουσίασης στο
WDSA/CCWI conference 2024

Kossieris, P., Tsoukalas, I., Nikolopoulos, D., Moraitis, G., & Makropoulos, C. (2024). Probabilistic Forecasting of Hourly Water Demand. Engineering Proceedings, 69(1), 100.



Όμως.. (όπως συνήθως στην Ελλάδα) δεν υπάρχουν δεδομένα…
ή ενναλακτικά τα διαθέσιμα δεδομένα είναι σε διαφορετική (χρονική ή χωρική) κλίμακα 
από την επιθυμητή (για τους σκοπούς της εκάστοτε μελέτης).

Χρονικός καταβιβασμός 
σε κλίμακα μικρότερη 
από αυτή της μέτρησης.

Γενικευμένη και φειδωλή προσέγγιση:
1. Στατιστική ανάλυση σε πολλαπλές κλίμακες (●) (χρονικές ή/και χωρικές) 
2. Αναγνώριση και προσαρμογή νόμων κλίμακας (−) στο χρόνο ή/και χώρο.
3. Χρήση των παραπάνω νόμων κλίμακας για την επέκταση (− − −) της πληροφορίας σε χαμηλότερες κλίμακες.

Kossieris P., Tsoukalas I., Efstratiadis A., Makropoulos C., Downscaling of statistical quantities 
at fine time-scales, towards cost-effective enrichment of water demand records. Water.1 day ……   10 days

Extrapolation | Fit scaling law 
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Χρονικός καταβιβασμός (downscaling) στατιστικών χαρακτηριστικών
Παράδειγμα
• Δεδομένα ωριαίας βροχόπτωσης από 33 μετεωρολογικούς σταθμούς στην Ολλανδία
• Χρήση δεδομένων ΜΟΝΟ ημερήσιας κλίμακας και, στη συνέχεια εφαρμογή της μεθόδου χρονικού 

καταβιβασμού (downscaling) στατιστικών χαρακτηριστικών
• Επικύρωση της μεθόδου μέσω των δεδομένων ωριαίας κλίμακας

Extrapolation | Fitting Extrapolation | Fitting Extrapolation | Fitting



Το λογισμικό  anySim (R package - https://github.com/itsoukal/anySim)
Συνοπτική περιγραφή του θεωρητικού υπόβαθρου, και πολλά παραδείγματα εφαρμογής σε R.

anySim Dashboard

Διαδικτυακή εφαρμογή R shiny 
(https://itsoukal.shinyapps.io/anysim_app/)

Tsoukalas, I., Kossieris, P., Makropoulos, C. (2020). Simulation of Non-Gaussian Correlated Random Variables, 
Stochastic Processes and Random Fields: Introducing the anySim R-Package for Environmental Applications and 
Beyond. Water 12, 1645, doi: 10.3390/w12061645. 



Στατιστικές/ 
Στοχαστικές 

μέθοδοι

Υδρο-
πληροφορική

Υδρολογία, 
υδραυλικά έργα 
και διαχείριση 

υδατικών 
πόρων

Δεδομένα

Τομή 3 επιστημονικών πεδίων

Ανάλυση και διαχείριση έργων υδατικών πόρων υπό 
αβεβαιότητα… 



Υπολογιστικά πειράματα τύπου Monte Carlo (MC)

Σημείο κλειδί:
Ρεαλιστική (στοχαστική) μοντελοποίηση και προσομοίωση των διεργασιών 
εισόδου.

Μοντέλο προσομοίωσής
(Ντετερμινιστικό)

𝒚௧ = 𝑔(𝒙௧, 𝜽)

𝜽 = 𝜃ଵ, … , 𝜃ௗ  
Παράμετροι του μοντέλου

 𝒙௧ = 𝑥௧
ଵ, … , 𝑥௧

௠

Δεδομένα εισόδου 
(Στοχαστικά)
π.χ., χρονοσειρές

 𝒚௧ = 𝑦௧
ଵ, … , 𝑦௧

௡

αποκρίσεις εξόδου
π.χ., χρονοσειρές

Βελτιστοποίηση
Εύρεση των βέλτιστων παραμέτρων 
θ που μεγιστοποιούν ή 
ελαχιστοποιούν κάποια κριτήρια 
(αντικειμενική συνάρτηση)

Εμπειρικά δεδομένα εισόδου
• Περιορισμένου μήκους.
• Δεν επιτρέπουν την εξαγωγή 

ασφαλών πιθανοτικών 
συμπερασμάτων.

Στοχαστικά δεδομένα εισόδου
• Διάδοση της αβεβαιότητα στις 

χρονοσειρές εξόδου του μοντέλου 
(model outputs).

• Εξαγωγή ασφαλών πιθανοτικών 
συμπερασμάτων.

• Ανάπτυξη πλαισίων 
προσομοίωσής -βελτιστοποίησης 
(simulation-optimization) αλλά και 
λήψης αποφάσεων που 
ενσωματώνουν την αβεβαιότητα.

Time

𝑥௧
ଵ

Time

𝑥௧
௠

Time

𝑦௧
ଵ

Time

𝑦௧
௡

𝑦௧
௝

= 𝑔 𝒙௧, 𝜽



1 .Προσομοίωση πλημμυρικών ροών υπό αβεβαιότητα



Κλασσική (ντετερμινιστική) προσέγγιση
Ζητήματα & προβληματισμοί
1) Περιορισμένη χρήση πιθανοτικών εννοιών 

(εκτός της εννοίας της περιόδου επαναφοράς, Τ)
2) Μη ενσωμάτωση της στοχαστικότητας/ 

μεταβλητότητας που χαρακτηρίζει τα δεδομένα 
εισόδου (πχ., βροχόπτωση προηγ. ημερών, και 
άρα CN), υετογράφημα εισόδου).

3) Μη εκτίμηση και ποσοτικοποίηση της 
αβεβαιότητας των αποτελεσμάτων.

Corine Soil type

SCS: CN

IDF models

Alternate blocks

Hydrologic model
UH models

Hydrographs @ nodes

Hydrodynamic 
model

Depth maps

1

2

3

2

3



Προς ένα στοχαστικό πλαισίο εκτίμησης πλημμυρικού κινδύνου/ 
διακινδύνευσης

• Ανάλυση σε κλίμακα επεισοδίου

• Συνδυάζει ντετερμινιστικά μοντέλα 
(υδρολογικά και υδροδυναμικά) με 
τεχνικές στοχαστικής προσομοίωσης

• Οδηγεί στην παραγωγή πιθανοτικών 
μεγεθών/αποτελεσμάτων (π.χ., χάρτες 
με βάθη πλημμύρας, ταχύτητες ροής)

• Παρέχει τη δυνατότητα ενσωμάτωσης 
(και ποσοτικοποίησης) της αβεβαιότητας 
(υδρολογικής και υδραυλικής)

• Υπολογιστικά εφικτή διαδικασία HEC-HMS

HEC-RAS

anySim

Efstratiadis A., Dimas P., Pouliasis G., Tsoukalas I., Kossieris P., Bellos V., Sakki G., 
Makropoulos C., Michas S., (2022). Revisiting flood engineering practices and the 
concept of risk under a hybrid stochastic simulation  framework. Water.



Αξιολόγηση ρίσκου και επιπτώσεων πλημμυρικών γεγονότων στην 
περιοχή του Ελληνικού

Πηγές αβεβαιότητας που λήφθηκαν υπόψιν 

I. Στατιστική αβεβαιότητα μέγιστης ετήσιας 
βροχόπτωσης

II. Χρονική κατανομή των επεισοδίων βροχής
III. Συνθήκες υγρασίας (βλ. Curve Number – 

CN)  εκτίμηση μέσω συνεχούς 
στοχαστικής προσομοίωσης της διεργασίας 
της ημερήσιας βροχόπτωσης.



Αξιολόγηση ρίσκου και επιπτώσεων πλημμυρικών γεγονότων στην 
περιοχή του Ελληνικού

Πηγές αβεβαιότητας που λήφθηκαν υπόψιν 

I. Στατιστική αβεβαιότητα μέγιστης ετήσιας 
βροχόπτωσης

II. Χρονική κατανομή των επεισοδίων βροχής
III. Συνθήκες υγρασίας (βλ. Curve Number – 

CN)  εκτίμηση μέσω συνεχούς 
στοχαστικής προσομοίωσης της διεργασίας 
της ημερήσιας βροχόπτωσης.



Σχεδιασμός έναντι πλημμυρικών φαινομένων υπο αβεβαιότητα

Παραγωγή, μέσω επιμερισμού, στοχαστικών υετογραφημάτων 
(με βήμα 15 min) για κάθε 𝛵, και συνεπών με τις πιθανοτικές 
κατανομές της 24h βροχόπτωσης.

Περίοδος επαναφοράς, T

Κατανομή μέγιστης ετήσιας ημερήσιας βροχόπτωσης

Κατανομή ημερήσιας βροχόπτωσης



Συζευγμένη προσέγγιση 1D και 2D υδροδυναμικών μοντέλων
Συνδυασμός πλεονεκτημάτων των 1D και 2D μοντέλων
 Γρήγορη υδροδυναμική αναπαράσταση 

εκτεταμένων διασυνδεδεμένων ποτάμιων 
συστημάτων.

 Επίλυση μεσώ ενός συζευγμένου 
αλγόριθμου 1D-2D: θεωρώντας ότι ένα 
ποτάμι/κανάλι έχει αναπαρασταθεί 1D με την 
περιοχή πίσω από ένα ανάχωμα να έχει 
αναπαρασταθεί σε 2D (συνδεδεμένα με ένα 
Lateral Structure). 

 Υπερχειλίζει από το κυρίως ποτάμι προς τις 
εκτάσεις εκτεταμένης κατάκλυσης: 
Δυνατότητα στον μηχανικό να κάνει ένα 
ranking των σεναρίων και προκαταρκτικές 
αξιολογήσεις των επικίνδυνων περιοχών 
πριν καν προχωρήσει στην αναλυτική 2D 
προσομοίωση.

 Bonus #1: Μειώνουν δραματικά τους χρόνους εκτέλεσης των υπολογισμών σε σχέση με ένα αμιγώς 2D μοντέλο. 
Σημαντικό για πολλαπλά σενάρια!

 Bonus #2: Σταδιακή ανάπτυξη των επιμέρους μοντέλων.



Πιθανότητα υπερχείλισης των 24 πλευρικών 
κατασκευών (lateral structures), για επεισόδια 
βροχόπτωσης 𝑇 = 200 έτη.

Στοχαστική προσομοίωση πλημμυρικών φαινομένων

Χάρτης πιθανότητας υπέρβασης του ύψους του κρασπέδου 
(10 cm), για επεισόδια βροχόπτωσης με 𝑇 =100 έτη.



Προσομοίωση πλημμυρικών ροών υπό αβεβαιότητα

Βασικά χαρακτηριστικά
• «Γεφυρώνει» ντετερμινιστικές και στοχαστικές προσεγγίσεις
• Επεκτάσιμο σε διάφορες χωρικές κλίμακες
• Επεκτάσιμο για την αντιμετώπιση διαφορετικών πηγών αβεβαιότητας
• Εντοπισμός (πιθανοτικά) περιοχών υψηλού ρίσκου 
• Πιθανοτική εκτίμηση και απεικόνιση των πλημμυρικών μεγεθών (π.χ., 

βάθη ή όρια πλημμύρας για διάφορα Τ)
• Υπολογιστικά εφικτή υπολογιστική διαδικασία



2. Βελτιστοποίηση συστημάτων υδατικών πόρων υπό 
αβεβαιότητα



Βελτιστοποίηση συστημάτων υδατικών πόρων υπό αβεβαιότητα

Stochastic models using 
long synthetic data

Decision-making problems 
in complex hydro-systems

Time 
expensive!

Time 
expensive!

Hydraulic
models

Calibration of physically-
based hydrological models

Συνήθη ζητήματα σε «πραγματικά» προβλήματα 
βελτιστοποίησης μηχανικού:

   Ανάγκη για βελτιστοποίηση ή ανάλυση ευαισθησίας του 
συστήματος

• Χρονοβόρα (δαπανηρή) αντικειμενική συνάρτηση (π.χ., 
αποτίμιση μέσω μοντέλου προσομοίωσης)

• Ασυνεχής και μη διαφορίσιμη αντικειμενική συνάρτηση

 Πολύπλοκα μοντέλα προσομοίωσης απαιτούν μεγάλο 
υπολογιστικό φόρτο (άρα και χρόνο!)

 Η χρήση εξελικτικών αλγορίθμων (evolutionary algorithms) βελτιστοποίησης καθίσταται απαγορευτική 
λόγο του μεγάλου αριθμού απαιτούμενων επαναλήψεων.

π.χ., 10 000 επαναλήψεις ενός (γρήγορου!) μοντέλου που απαιτεί 5 λεπτά για τον υπολογισμό της 
αντικειμενικής συνάρτησης    10 000 × 300/60 × 60 × 24 =  𝟑𝟒. 𝟕 μέρες!!

Βελτιστοποίηση! Υπολογιστικός φόρτος  



Βελτιστοποίηση συστημάτων υδατικών πόρων υπό αβεβαιότητα
Βελτιστοποίηση! Υπολογιστικός φόρτος  
Βασική ιδέα : Βελτιστοποίηση με την χρήση υποκατάστατων 
μοντέλων μηχανικής μάθησης (βλ. Surrogate-based Opitimization)

• Κατασκευή ενός μοντέλου μηχανικής μάθησης/ML (GPs, ANNs, 
SVMs) με το οποίο αντικαθιστάμε τις περισσότερες ακριβές 
προσομοιώσεις – βλ. υποκατάστατα μοντέλα.

Χωρίς απαιτήσεις σε hardware! Μόνο έξυπνο software.

Flowchart of a typical surrogate-based optimization procedure.

• Οι περισσότερες αξιολογήσεις της 
αντικειμενικής συνάρτησης γίνονται με τη 
βοήθεια του υποκατάστατου μοντέλου (ML), 
ενώ το ακριβό μοντέλο χρησιμοποιείται 
σποραδικά για τη βελτίωση της ακρίβειας του 
υποκατάστατου μοντέλου (Razavi et al., 
2012).

• Τεχνική κατάλληλη και για πολυκριτηριακά 
προβλήματα (Tsoukalas and Makropoulos 
2015a; 2015b) 



Optimal policy

Stopping 
criteria 

satisfied?

Start COM-API 
with WEAP21 

(MATLAB)

Apply operational 
rules (WEAP21)

Evaluation of 
objective function(s) 

(WEAP21)

Generate new 
set of
Operation 
rules
Using selected 
optimization 
Method 
(MATLAB)

Yes

No

Διάγραμμα ροής που περιγράφει τη σύνδεση 
WEAP21-MATLAB

Χρήση στοχαστικών χρονοσειρών 1000 ετών

Στόχος: 
1) Μεγιστοποίηση πρωτεύουσας ενέργειας συστήματος 
για αξιοπιστία 99%
2) Μεγιστοποίηση πρωτεύουσας ενέργειας συστήματος 
για αξιοπιστία 99% μόνο για μια συγκεκριμένη περίοδο 
(Μάιο-Σεπτέμβριο).
Μεταβλητές ελέγχου:
Ένας στόχος 𝜃௜ ανά YHE, οπού αναφέρεται στη μηνιαία 
παραγωγή ενέργειας, επιπλέον στόχος για άντηληση.

Παράδειγμα ΔΥΠ πολυκριτηριακής βελτιστοποίησης 4D: H περίπτωση του 
Νέστου [1]
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Energy-duration curves and Monthly energy characteristics

Firm energy (Ulp) Firm energy (Lrp) Secondary energy (Ulp)

Secondary energy (Lrp) Energy-duration curve (Ulp) Energy-duration curve (Lrp)

Setup:
 Ordinary Kriging model
 Gauss correlation function
 ParEGO algorithm (Knowles, 2005)

S2: 
f1 = 72 GWh 
f2 = 77 GWh

Σύγκριση ParEGO best, median και worst EAF με 
NSGA-II για 400 και 10 000 υπολογισμούς του 

μοντέλου αντίστοιχα.

S2

S1

Παράδειγμα ΔΥΠ πολυκριτηριακής βελτιστοποίησης 4D: H περίπτωση του 
Νέστου [2]

S1: 
f1 = 37 GWh 
f2 = 123 GWh 

Single simulation run ~ 2 min →

10 000 ⨉ 2 min ~ 333 h ~ 14 days



Αντί επιλόγου, μια λίστα ευχών

1. Αποδοχή πως όλα τα μοντέλα είναι λάθος αλλά κάποια είναι χρήσιμα. ~ George Box (1979 p. 2).

2. Αποδοχή πως η αβεβαιότητα είναι πανταχού παρούσα – ανεξάρτητα του προβλήματος, του 
μοντέλου, και του χρονικού ορίζοντα

3. Αποδοχή της ανάγκης για συγχώνευση πληροφοριών από πολλαπλές πηγές (αλλά και μοντέλα).

4. Αποδοχή ότι τα μοντέλα πρέπει να επικαιροποιούνται συχνά.

5. Αποδοχή πως η αβεβαιότητα έχει δύο όψεις.

• Την όμορφη (μπορεί να μας προετοιμάσει καλύτερα για το απρόβλεπτο) και 

• Την άσχημη (δεν είναι απλά ένας αριθμός* – περιπλέκει αποφάσεις και πολιτική).

Λίστα ευχών 

Δείτε επίσης, το βιβλίο: Leach P., (2006), Why Can't You Just Give Me The Number? An Executive's Guide to Using 
Probabilistic Thinking to Manage Risk and to Make Better Decisions 



Ευχαριστώ πολύ!

Τέσσερις πραγματοποιήσεις 2Δ τυχαίου περίπατου (random walk)
(Ξεκινώντας πάντα από την κόκκινη τελεία.)
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