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Abstract. Risk-based management of environmental systems, like rivers, lakes, 
groundwater aquifers and coastal areas, is a very useful approach for combating 
specific problems, like water pollution and loss of ecosystems biodiversity. 
Uncertainties that could be inherent to natural variabilities in space and time, such 
as those due to hydrological and climatic variations, together with uncertainties 
related to human activities or terrorist attacks, may produce various risks and 
failures affecting both human health and ecosystems integrity. The fuzzy set 
theory, in combination with mathematical modelling based on partial differential 
equations, is proposed in this paper, in order to propagate uncertainties in 
estimating output variables in water quality problems of water systems. 
Uncertainties in input variables and values of model parameters are first 
introduced as fuzzy numbers. Then, they are propagated using fuzzy arithmetic. 
Output variables, like water pollution and environmental risk, are estimated in 
terms of fuzzy numbers.  
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Introduction 

Environmental systems like coastal areas, lakes and rivers are complex, not only 
because of their heterogeneity and huge spatial and temporal variations of their 
physical, chemical and biological properties, but also because of human interventions. 
Release of pollutants from various sources, like domestic, industrial and agricultural 
water uses, may affect the quality properties of natural water and deteriorate the 
functioning of various ecosystems. Intentional damage to the quality of environmental 
water in such systems from terrorist attacks may also become a major threat to human 
health and environmental security. 

In order to take into account major uncertainties for modelling the behaviour of 
such systems, stochastic modelling has been applied in the past [1], [2], [3]. According 
to stochastic simulation, physical parameters and input loads are considered as random 
variables. This is a frequency-based approach to propagate uncertainties. Results of 
probability theory (stochastic arithmetic) have been introduced in stochastic modelling 
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in the form of analytical functional relationships between random variables, or by 
simulating a large number of different realisations (Monte Carlo method) [3]. 

In this paper, the fuzzy set theory in combination with mathematical modelling is 
proposed in order to assess uncertainties in estimating environmental water pollution. 
First, uncertainties in input loads and values of physical parameters are introduced as 
fuzzy numbers, and then uncertainties are propagated by using fuzzy calculus. With 
fuzzy mathematical modelling it is possible to assimilate imprecise data and directly 
produce imprecise output in the form of fuzzy numbers without repeating a large 
number of computations. 

Examples of application in simplified and complicated real cases illustrate the 
capabilities of the above methodology and the precautions needed to be taken for its 
successful implementation in water pollution problems.  

1. Types of Uncertainty 

In managing complex environmental systems, there are several types of 
uncertainties and risks. These are caused by different uncertainties and imprecision, 
such as the high variability in space and time of the hydrodynamic, chemical and 
biological processes involved and also man-induced uncertainties. 

Uncertainties are due to lack of knowledge about the structure of various physical 
and biochemical processes and also to the limited amount of data available [2], [7]. 
Several authors in the literature have analysed different types of uncertainties and made 
various distinctions, such as between objective and subjective, basic and secondary, 
natural and technological uncertainties. 

Distinction should be made between 
 

(1) aleatory or natural uncertainties or randomness, and 
(2) epistemic or man-induced or technological uncertainties. 

1.1. Aleatory Uncertainties or Randomness 

It is postulated that natural uncertainties are inherent to the specific process and 
that they cannot be reduced by use of an improved method or more sophisticated 
models. They are linked to natural variability both in space and time. Uncertainties due 
to natural randomness or aleatory uncertainties may be taken into account by using the 
stochastic or fuzzy approaches. 

1.2. Epistemic or Man-induced Uncertainties 

Man-induced uncertainties are of different kinds: (a) data uncertainties, due to 
sampling methods (statistical characteristics), measurement errors and methods of 
analysing the data (b) modelling uncertainties, due to the inadequate mathematical 
models in use and to errors in parameter estimation, and (c) operational uncertainties, 
which are related generally to the construction, maintenance and operation of 
engineering works. Contrary to natural randomness, man-induced uncertainties may be 
reduced by collecting more information or by improving the mathematical model. As 
can be seen later on in this paper, in a Bayesian framework prior information may be 
increased into posterior information, by use of additional information or data. 



Alternatively, when data are scarce, the fuzzy set theory may be used to handle and 
quantify imprecision. 

The fate of pollutants in a water receiving body, such as a river, is influenced by 
the combination of three mechanisms: (a) advection by currents (b) turbulent diffusion 
and (c) chemical, biological or other interactions. As a result, collected data of physical 
and chemical parameters are very irregular in time, as shown in Figure 1 for typical 
time series of nitrate concentration. 
 
 

 
 

Figure 1. Uncertainties in time series of nitrate concentration  

2. Probabilistic and Fuzzy Definitions of Risk 

As explained in [7], the load l may be defined as a variable reflecting certain 
external conditions under which the system may be stressed. There is a characteris tic 
variable describing the capacity of the system to overcome this external load. This 
system variable may be defined as the resistance r.  

In order to define the probabilistic risk, one should answer three main questions: 
 

1. When might the system fail? 
2. How often might the system fail? and 
3. What are the consequences when there is a failure? 

 
In general, different measures of risk may be defined. The more general is to 

consider all three of the above questions, i.e. the scenario (critical condition), the 
frequency or probability of failure and the consequences. An incident or even failure 
will occur when the load exceeds this resistance, i.e.,  

 



 FAILURE or INCIDENT     : l  > r  
 SAFETY or RELIABILITY : l  ≤ r  

 
The product of probability of failure multiplied by the consequences may be taken 

as a measure of risk, representing the expected or probable consequences. More 
generally, risk may be defined as a function of two variables: (1) the probability of 
failure and (2) the consequences.  

Engineers have often considered a measure of risk as just being the probability of 
failure [3]. In a probabilistic framework, if l and r are considered as random or 
stochastic variables the result is: 

 
 ENGINEERING RISK= probability of failure= P(l  > r)   
 ENGINEERING RELIABILITY= probability of success= P(l  ≤ r)  
 

As shown in Figure 2, if )r,(fLR l is the joint probability density function, the risk 

p
F 

may be estimated by integrating the function )r,(fLR l  above the bisectrice line 

L=R. For calculating the engineering risk, the following formula is obtained: 
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l
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      (1) 

This is a general expression for quantifying risk in a probabilistic framework. 
However, Equation 1 is rather difficult to use, because most of the time the joint 
density probability function )r,(fLR l is unknown. Simplifications include the 
assumption of independence between load and resistance, or the case when one of the 
two variables is deterministic.  

 

Figure 2. Calculation of the engineering risk by integrating the joint density probability function )r,(f LR l  
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If the resistance r is taken as deterministic with a constant value of r=R, then 
Equation 1 is written as follows: 

∫=>=
∞

R
LF d)(f)RL(Pp ll       (2) 

If fuzzy logic is used, l and r are considered as fuzzy numbers, noted as L~  and R~  
(see Appendix). Then risk and reliability are defined by means of appropriate fuzzy 
measures, which are introduced below. 

Consider that the system has a resistance R~  and a load L~ , both represented by 
fuzzy numbers. A reliability measure or a safety margin of the system may be defined 
as being the difference between load and resistance [20], [7]. This is also a fuzzy 
number given by  

 

    L~R~M~ −=    
 

Taking the h-level intervals of R~ and L~ as  
 

    R(h)=[R1(h), R2(h)],   
    L(h)=[L1(h), L2(h)],  

 
then, for every h ∈ [0, 1], the safety margin M(h) is obtained by subtracting L(h) from 
R(h), i.e.  
    L(h)-R(h)=M(h) .   

Two limiting cases may be distinguished, as shown in Figure 3: 
There is absolute safety if:  

 
    M(h) ≥ 0    ∀ h [0,1]  
 

whereas absolute failure occurs when: 
 
    M(h) < 0   ∀ h [0,1] . 
 
A fuzzy measure of risk , or fuzzy risk index Ri may be defined as the area of the 

fuzzy safety margin, where values of M are negative. Mathematically, this may be 
shown as: 
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The fuzzy measure of reliability, or fuzzy reliability index Re is the complement of Ri, 
i.e. 
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Figure 3. Absolute safety (a), absolute failure (b) and fuzzy risk (c). 
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3. Stochastic Modelling 

Deterministic modelling introduces sharp values of problem variables, model 
parameters and boundary conditions. If the mathematical model consists of a set of 
partial differential equations, then analytical or numerical solutions may be found by 
use of finite differences or finite elements. This approach is not adequate to incorporate 
imprecision on data and model parameters, propagate uncertainties and proceed with 
risk and reliability analysis. 

According to stochastic simulation, problem variables, like hydrological, 
hydrodynamic and water quality, model parameters and input loads are considered as 
random variables. This is a frequency-based approach, which is able to propagate 
uncertainties. Results of probability theory (stochastic arithmetic) may be introduced in 
stochastic modelling in the form of analytical functional relationships between random 
variables, or by simulating a large number of different realisations (Monte Carlo 
method). In stochastic modelling risk and reliability analysis of water quantity and 
quality may be also considered.  

The connection between deterministic and stochastic approaches has been analysed 
for the case of aquifer systems [2]. Furthermore, various methods and tools have been 
developed in the past for stochastic simulation and risk quantification, such as: (1) 
Time series analysis, filtering, krigging, (2) Stochastic differential equations, (3) 
Spectral analysis, (4) Perturbation analysis, and (5) Monte-Carlo simulation. 

More recently, the United States Environmental Protection Agency has 
developed guidelines for the application of more advanced methodologies for risk 
assessment and management [24], [25], [26]. Ecological Risk Assessment (ERA) 
evaluates the likelihood that adverse ecological effects may occur or are occurring as a 
result of exposure to one or more stressors. The Cumulative Risk Assessment 
methodology was developed to assess risks and make environmental protection 
decisions based not only on individual contaminants, such as lead, chlordane, and 
DDT, but by describing and quantifying the risks from many sources of pollution. 
Comparative Risk Assessment is a framework that uses sound scientific, economic and 
policy analysis as well as stakeholder participation to identify and compare the areas at 
greatest environmental risk and provide a methodology for prioritising environmental 
problems. 

Stochastic modelling is considered in this paper in connection with pollution of 
natural water systems. Deterioration of groundwater and surface water quality from 
natural and anthropogenic causes is of growing concern in many parts  of the world. 
Increased water pollution, caused by urban, industrial and agricultural activities, is 
directly related to the constant growth in the number of people living in river basins 
and coastal areas. Huge amounts of nitrogen and phosphorus are released from sewage 
and leaching of fertilisers resulting in algal blooming, eutrophication, shellfish die-off 
and loss of habitat, together with severe economic, social and ecological losses. The 
situation becomes critical in lakes and semi-enclosed seas such as the Mediterranean, 
where water exchange with the outer ocean is quite small. 

Simulation of environmental water quality is based on the well-known advection-
dispersion mathematical model. The rate of change of the concentration of n different 
pollutants under biochemical interactions can be expressed in two dimensions as: 
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where: 

 
ck is the concentration for the kth pollutant; 
u and v are the water velocities in the x and y directions (m/s);  
Dx and Dy are the dispersion coefficients in the x and y directions (m2/s);  
Sk is the source term describing the biochemical reactions. 
 
As an example of application, the risk of coastal pollution is considered from a 

point source, emitting different pollutants, such as nutrients, coliform bacteria and 
heavy metals. Different case studies have been analysed in the Mediterranean, aiming 
to establish an optimum design for a submarine outfall discharging wastewater into the 
sea. The problem is to find the best position for the outfall, so that pollution impacts 
along the shoreline are kept below the concentration values fixed by the guidelines [7]. 

Case studies have been developed in the Aegean and Ionian Seas, which form part 
of the Eastern Mediterranean. Uncertainties exist due to wind-generated currents, 
which vary randomly both in space and time. As shown in Figure 4, the contour lines 
of equal impact probability may be computed for a submarine outfall on the Greek 
island of Rhodes, by tracking a large number of particles, which simulate the 
wastewater discharge at the outfall’s mouth. For every time series of currents, recorded 
using a submerged current meter, and which corresponds to a certain prevailing wind, 
regions where pollution exceeds the standards may be obtained. For example, if we 
know the impact probabilities shown in Figure 4 and the E-coli bacteria concentration 
at the source to be equal 103 per 100 ml, then areas having impact probabilities greater 
than 0.1 are at risk, because the bacteria concentration is greater than 0.1x103 =greater 
than 100 per 100 ml, which is the maximum allowed E-Coli concentration for bathing 
waters. By repeating the simulations for different winds, a position for the outfall may 
be found that results in an acceptable level of risk of bacterial contamination along the 
shoreline. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. Contour lines of impact probabilities from a submarine outfall 



4. Fuzzy Modelling 

Let us now assume that only limited information is available on the input pollutant 
loads (boundary conditions) and the value of the dispersion coefficients. This type of 
uncertainty can be taken into account by considering both input loads and dispersion 
coefficients as fuzzy numbers. This implies that unknown pollutant concentrations at 
any point x, and at any time t, will also behave as fuzzy numbers. They will still follow 
the advective dispersion partial differential equations, which are written as: 
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where the symbol 
~

 is used to denote a fuzzy variable. 

Although derivatives of fuzzy variables exist, there is no unique solution to 
equation (4), because fuzzy numbers take different values at different levels of 
confidence (Appendix). If for every confidence level h, we are looking only for the 
lower and upper limiting values of the unknown fuzzy variables, then the non-
uniqueness problem may be resolved as follows. Every fuzzy number X

~  may be 
represented by a discrete set of h-level cuts )h(X  ([12], [13], [22], [23], [21], 
Appendix). These are ordinary intervals that for the fuzzy variables C and D should 
also follow the advective dispersion equations written as: 
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k=1, 2,. . . n  (5) 
 

where the symbol  is used to denote an ordinary interval. 
Applying finite differences or finite elements to equation (5), a system of interval 

equations needs to be solved. This is difficult from a mathematical point of view, and 
has stimulated a lot of interest, because whatever possible technique is used, only 
enclosures for the range of the output function can be produced [5], [6], [11], [14], 
[17]. Finding the best possible enclosure for an unknown interval function, which is 
defined as the “hull” of the solution, is a fundamental problem of interval analysis. It 
should be treated with care, as the solution accuracy depends on the shape of the 
interval function [18]. 

Shafike [19] has used the finite element method to simulate a groundwater flow 
model with fuzzy coefficients. The algebraic system of interval equations was solved 
with an iterative algorithm [14]. Dou et al. [4] applied the fuzzy set theory to a steady-
state groundwater flow model with fuzzy parameters combined with the finite 
difference method. A non-linear optimisation algorithm was used in order to apply the 
extension principle for the solution of groundwater flow equations with fuzzy numbers 
as coefficients for the hydraulic heads. Because of the non-uniqueness of the maximum 
and minimum values, this may lead to great inaccuracies. 



Ganoulis et al. [8], [9], [10] used fuzzy arithmetic to simulate imprecise relations 
in ecological risk assessment and management. For the solution of the algebraic system 
of equations with fuzzy coefficients, direct interval operations were employed, instead 
of the iterative methods or non-linear optimisation techniques used in previous studies.  

5.  Fuzzy Numerical Simulation 

Finite differences and finite elements have been used to produce numerical 
enclosures of the solution of equation (5) ([7], [15]). Enclosures may fit the exact range 
of the unknown function better, depending on two main factors: 

 
1. the accuracy of the numerical algorithm, and 
2. the correct application of the algebra of fuzzy arithmetic (Appendix). 

 
The Eulerian-Lagrangian scheme, based on the characteristics method, has also 

been used. In this method the numerical integration of the parabolic part of equation (5) 
is conducted on the characteristics lines of the equation.  

Equation (5) is split into two parts:  
 
1. the hyperbolic part , which in one dimension is written as udtdx = , and  
2. the parabolic part that takes the following form: 

 
)dx))h(Cd)(h(Ddt)h(Cd 22=       (6) 

 

Using finite differences, a large number of particles are moved over a stationary 
grid to track the advection equation. At each moment in time n∆t the position of each 
particle is xp and its concentration is Cp. At the next moment in time (n+1)∆t the new 

position of the particle becomes tuxx n
p

1n
p ∆+=+

, and the change of concentration 

at the nodal points, due to the dispersion part (6), is computed by an explicit finite 
difference algorithm as follows: 

 
))h(C)h(C2)h(C( )h(D t)h(C)h(C n

1i
n
i

n
1i

n
i

1n
i +−

+ +−∆+=    (7) 

 

The new particle concentrations are evaluated by adding the change due to the 
diffusive part (7). Then, the new nodal concentrations are calculated by accounting the 
corresponding number of particle concentrations. 

In order to further validate the accuracy of the proposed methodology, another 
unsteady, one-dimensional case was studied, for which the analytical solution was 
known [15]. This is the case of the one-dimensional convective dispersion equation (5) 
with a supplementary term at the right side representing a linear concentration decay of 

the form -
~k c, where 

~k  is a fuzzy decay coefficient. The analytical solution has the 
following form: 
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Taking 
~k  as a triangular fuzzy number (1⋅10-5, 3⋅10-5, 5⋅10-5), and using interval 

representations of fuzzy numbers for h=0, 0.25, 0.5, 0.75, comparison between 
numerical simulation and analytical solution shown in Figures 5 and 6 indicate that the 
proposed methodology is very accurate in unsteady water pollution fuzzy simulation. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Variation of interval concentrations c (h) for h=0, t=16h: comparison between numerical and 
analytical solutions.  
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Figure 6: Fuzzy concentrations~c : (a) at x=40 km and (b) at x=57 km, t=16h. 

 

In real geophysical flows, as in coastal circulation in the Bay of Thermaikos, a 
finite element grid can better describe irregular boundaries. The characteristic Galerkin 
numerical algorithm was applied for fuzzy simulation of coastal water quality. 
Velocities of currents were computed using a two-dimensional coastal circulation 
model. Numerical simulation in the form of fuzzy numbers of output concentration of 
different pollutants at different locations within the bay incorporates imprecision, due 
to limited information on land-based pollutant sources and the value of the dispersion 
coefficients [16]. 

The finite element grid covering the Bay of Thermaikos and the location of land-
based pollutant sources are shown in Figure 7. The model [16] contains ten different 
pollutants, namely: chlorophyll-a, coliforms, organic nitrogen, ammonia nitrogen, 
nitrite nitrogen, nitrate nitrogen, organic and inorganic phosphorus, BOD, and 
dissolved oxygen shortage (or deficit). Results of fuzzy computational modelling are 
shown in Figure 8 for phytoplankton concentrations at node numbered 200. Knowing 
the phytoplankton concentration values allowed in national specifications, the risk of 
eutrophication can be evaluated using the fuzzy risk index. 
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Figure 7. Finite element grid covering the Bay of Thermaikos 

 

 

 

 
 

Figure 8. Fuzzy phytoplankton concentration at node 200 . 



6. CONCLUSIONS 

When limited information or only a few data are available on model parameters 
and boundary conditions, fuzzy modelling can be used in order to propagate 
uncertainties and quantify the environmental risk of water systems. Land-based 
pollutant loads and values of dispersion coefficient may be considered as fuzzy 
numbers. Uncertainty in output variables as pollutant concentrations can be calculated 
using fuzzy modelling. For water pollution problems, a fuzzy risk and reliability 
analysis may be performed; and in combination  with fuzzy modelling can be applied 
in real situations in order to estimate the risk of environmental water pollution. 
 
 

APPENDIX : FUZZY NUMBERS AND FUZZY ARITHMETIC 
 

A fuzzy number %X  may be formally defined as a set of ordered pairs 

 %X  = {( x, µ %X(x)) : x ∈R; µ %X(x) ∈ [ 0, 1 ]}   (A.1) 

where x is a particular value of %X  and µ %X(x) represents its membership function. 

Values of the membership function are located in the closed interval [0,1]. The closer 

µ %X(x) is to 1, the more “certain” one is about the value of x. A fuzzy number %X  is 

normal and convex when its membership function takes one maximum value equal to 1 
and always increases to the left of the peak, and decreases to the right. 

The simplest type of fuzzy number is the triangular, which is one having linear 
membership functions on either side of the peak. A fuzzy triangular number can be 
characterised by three real numbers: two values of x i.e., x1, x2, where the membership 

function reaches zero, and one value x3, where it reaches a value of 1.  

A triangular fuzzy number (TFN) may be described by the values of x at points x1, 

x2 and, i.e. %X  = (x1, x2, x3) 
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Figure A.1. A triangular fuzzy number %X=(x1, x2, x3). 

 



The h-level set of a fuzzy number %X  (Fig. A.1) is the ordinary set or interval 
X (h), defined as 

 
  X (h)={x: µ %X(x) ≥h)}     (A.2) 

Let us consider two triangular fuzzy numbers 
~
A  and 

~
B  given by the triplets 

~
A =(a1, a2, a3) and 

~
B =(b1, b2, b3). We have 

 

i) Addition: 
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A +

~
B  = )ba,ba,ba( 332211 +++   

ii) Subtraction: 
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The multiplication or division of two fuzzy numbers does not always produce a 

fuzzy number. These operations can be defined as follows:  
 

iii) Multiplication  
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Algebraic Properties of Fuzzy Numbers 

Let us assume that 
~
A , 

~
B  and 

~
C  are fuzzy numbers.  The following laws hold: 

 

Cummutativity  
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However, subdistributivity and subcancellation are not always valid.  In particular 
we have  
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Overestimation usually occurs because of the failure of the distributive and 

cancellation laws. 
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